Study of the properties of carbon materials obtained from plant biomass by hydrothermal carbonization as initial precursors for the production of graphene-like structures

Authors

  • N.G. Prikhodko Almaty University of Energy and Communications named after G. Daukeev, 126/1, Baitursynov str., Almaty, Kazakhstan
  • M.A. Yeleuov Bes Saiman Group, 38, Tulebayeva str., Almaty, Kazakhstan
  • A.A. Abdisattar Satpayev University, 22, Satpayev str., Almaty, Kazakhstan
  • К. Askaruly Almaty University of Energy and Communications named after G. Daukeev, 126/1, Baitursynov str., Almaty, Kazakhstan;Satpayev University, 22, Satpayev str., Almaty, Kazakhstan
  • А.B. Tolynbekov al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • A.T. Taurbekov al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc22(1)13-26

Keywords:

biomass waste, wheat straw, barley straw, wheat bran, rice husk, hydrothermal carbonation, hydrochar

Abstract

The results of hydrothermal carbonization of pre-treated biomass (wheat bran, wheat straw, rice husk, barley straw) are presented and the parameters that ensure the carbonization process are obtained. The results of studying the morphological, structural and elemental composition of the obtained carbon structures using physical and chemical methods are presented. Plant waste biomass mainly consists of carbohydrates, fiber and proteins. Therefore, biowaste can be converted into carbon-based materials to produce cost-effective products for new applications. The selected biomass is abundant in the Republic of Kazakhstan, widespread and easily accessible, and has a multi-layered layer structure consisting of three different polymers that bind to each other: namely, cellulose, hemicellulose and lignin. During the hydrothermal process, a highly concentrated hot alkali solution gradually saponifies the wax and dissolves hemicellulose and lignin, while crystalline cellulose is partially degraded but not dissolved. After hemicellulose and lignin are removed, the bonds between cellulose microfibrils are weakened. The remaining cellulose is further subjected to a carbonization process. The data obtained allowed us to draw a conclusion about the correct choice of parameters and synthesis method, processing technique for both the initial biomass and the product after synthesis.

References

(1). Xiao K, Yifeng Zh, Hanwu L, Chenxi W, Yunfeng Zh, Erguang H, Xiaona L, Qingfa Zh, Moriko Q, Wendy M, Rongge Z, Zhen F, Roger R (2020) Chemical Engineering Journal 399(1):125808. https://doi.org/10.1016/j.cej.2020.125808

(2). Harnesk D (2019) Geoforum 98:25-35. https://doi.org/10.1016/j.geoforum.2018.09.019

(3). Rodriguez-Gomez D (2012) Applied biochemistry and biotechnology 166(8):2051-2063. https://doi.org/10.1007/s12010-012-9631-x

(4). Prasad S, Singh A, Joshi HC (2007) Resources, Conservation and Recycling 50(1):1-39. https://doi.org/10.1016/j.resconrec.2006.05.007

(5). Norhusna MN, Lau LC, Lee KT, Abdul RM. (2013) Journal of Environmental Chemical Engineering 1(4):658–666. https://doi.org/10.1016/j.jece.2013.09.017

(6). Zhengang L, Fu-Shen Z (2009) Journal of Hazardous Materials 167(1-3):933–939. https://doi.org/10.1016/j.jhazmat.2009.01.085

(7). Ruthrotha SB, Dinesh J, Suma BS, Nagashankar G, Arif M, Balasubramanyam K, Eswaramoorthy M, Kundu TK (2008) Nano Letters 8(10):3182-3188. https://doi.org/10.1021/nl801503m

(8).Titirici M, Antonietti M, Thomas AA (2006) Chemistry of Materials 18(16):3808-3812. https://doi.org/10.1021/cm052768u

(9). Sevilla M and Fuertes AB (2011) Energy Environmental Science 4:1765-1771. https://doi.org/10.1039/c0ee00784f

(10). Sevilla M, Fuertes AB (2009) Carbon 47:2281-2289. https://doi.org/10.1016/j.carbon.2009.04.026

(11). Limin C, Xingliang T, Xinyuan Zh, Jingtao Zh, Xuelei T, Jingyu W, Mingyong X, Wei X (2014) Metabolic Engineering 24:150-159. https://doi.org/10.1016/j.ymben.2014.05.001

(12). Toufiq Reza M, Andert J, Wirth B, Busch D, Pielert J, Lynam JG, Mumme J (2014) Applied Bioenergy 1(1):11-29. https://doi.org/10.2478/apbi-2014-0001

(13). Jain A, Balasubramanian R, Srinivasan MP (2016) Chemical Engineering Journal 283(1):789-805. https://doi.org/10.1016/j.cej.2015.08.014

(14).Sun R, Lawther JM, Banks WB (1995) Ind. Crops Prod 4:127-145. https://doi.org/10.1016/0926-6690(95)00025-8

(15). Reddy N, Yang Y, (2007) J. Agric. Food Chem 55:8570-8575. https://doi.org/10.1021/jf071470g

(16). Rodriguez-Gomez D (2012) Applied biochemistry and biotechnology 166(8):2051-2063. https://doi.org/10.1007/s12010-012-9631-x

(17). Prasad S, Singh A, Joshi HC (2007)Resources, Conservation and Recycling 59(1):1-39. https://doi.org/10.1016/j.resconrec.2006.05.007

(18). McKendry P (2002) Bioresource technology 83(1):37-46. https://doi.org/10.1016/S0960-8524(01)00118-3

(19). Ma’Ruf A, Pramudono B, Aryanti N (2017) AIP Conf. Proc, American Institute of Physics Inc: 30044. https://doi.org/10.1063/1.4978086

(20). Beaugrand J (2004) International Journal of Plant Sciences 165(4)553-563. https://doi.org/10.1086/386554

(21). Giudicianni P, Cardone G, Ragucc R (2013) Journal of Analytical and Applied Pyrolysis 100:213-222. https://doi.org/10.1016/j.jaap.2012.12.026

Published

2024-03-25

How to Cite

Prikhodko, N., Yeleuov, M., Abdisattar, A., Askaruly К., Tolynbekov А., & Taurbekov , A. (2024). Study of the properties of carbon materials obtained from plant biomass by hydrothermal carbonization as initial precursors for the production of graphene-like structures. Combustion and Plasma Chemistry, 22(1), 13–26. https://doi.org/10.18321/cpc22(1)13-26

Most read articles by the same author(s)