Effect of Ce promotion on catalytic activity of Ni-Al catalysts in dry reforming of methane

Authors

  • A.M. Manabayeva Kazakh-British Technical University, 9 Tole bi str., Almaty, Kazakhstan; D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, 142 Kunaev str., Almaty, Kazakhstan
  • S.A. Tungatarova D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, 142 Kunaev str., Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • R.O. Sarsenova D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, 142 Kunaev str., Almaty, Kazakhstan
  • D.Yu. Murzin Laboratory of Industrial Chemistry and Reaction Engineering, Åbo Akademi University, 2 Helsinginkatu str., Turku/Åbo, Finland
  • G.G. Xanthopoulou Institute of Nanoscience and Nanotechnology NCSR Demokritos, Agia Paraskevi str., 15310, Athens, Greece

DOI:

https://doi.org/10.18321/cpc21(4)249-255

Keywords:

synthesis gas, dry reforming of methane, solution combustion synthesis, Ni-Ce-Al catalysts

Abstract

The Ni-Al, Ni-Ce and Ni-Ce-Al catalysts tested in the dry methane reforming (DRM) were studied. Catalysts were synthesized by solution combustion synthesis and characterized by BET, XRD and TEM. Catalytic activity was studied at 600–900 °C with a 33%CH4:33%CO2:34%Ar (vol.%) fed with total flow rate of 100 ml/ min (3000 h−1). The CH4 and CO2 conversion increased with the increasing of Ce up to 15 wt.%, however, with further increase in Ce content conversion of gases decreased. Carbon was formed as filaments when catalysts worked at high temperature. CeAlO3 species could prevent the formation of filamentous carbon during DRM. Solution combustion synthesis is attractive method of preparation of catalysts, due to high dispersion of Ni particles, thus, surface area is small, diminishing the coke deposition and enhancing the stability.

References

(1). Dekkar S, Tezkratt S, Sellam D, Ikkour K, Parkhomenko K, Martinez-Martin A, Roger AC (2020) Catalysis Letters 150:2180–2199. https://doi.org/10.1007/s10562-020-03120-3

(2). Ekeoma BC, Yusuf M, Johari K, Abdullah B (2022) International Journal of Hydrogen Energy 47:41596–41620. https://doi.org/10.1016/j.ijhydene.2022.05.297

(3). Bakhtiari K, Kootenaei AS, Maghsoodi S, Azizi S, Ghomsheh SMT (2022) Ceram. Int. 48:37394–37402. https://doi.org/10.1016/j.ceramint.2022.09.062.

(4). Marinho ALA, Toniolo FS, Noronha FB, Epron F, Duprez D, Bion N (2021) Appl. Catal. B. Env. 281:119459. https://doi.org/10.1016/j.apcatb.2020.119459.

(5). Sepehri S, Rezaei M (2017). Int. J. Hydrogen Energy 42:11130–11138. https://doi.org/10.1016/j.ijhydene.2017.01.096.

(6). Xu S, Slater TJA, Huang H, Zhou Y, Jiao Y, Parlett CMA, Guan S, Chansai S, Xu S, Wang X, Hardacre C, Fan X (2022) Chem. Eng. J. 446:137439–137452. https://doi.org/10.1016/j.cej.2022.137439.

(7). Gao X, Ge Z, Zhu G, Wang Z, Ashok J, Kawi S (2021) Catalysts 11:1003–1023. https://doi.org/10.3390/catal11081003.

(8). Kim SB, Eissa AAS, Kim MJ, Goda ES, Youn JR, Lee K (2022) Catalysts 12:423–446. https://doi.org/10.3390/catal12040423.

(9). Chein RY, Fung WY (2019) Int. J. Hydrogen Energy 44:14303–14315. https://doi.org/10.1016/j.ijhydene.2019.01.113

(10). Zhang Y, Zeng R, Zu Y, Zhu L, Mei Y, Luo Y, He D (2022) Chin. J. Chem. Eng. 48:76–90. https://doi.org/10.1016/j.cjche.2021.08.027.

(11). Manabayeva AM, Mäki-Arvela P, Vajglová Z, Martinez-Klimov M, Tirri T, Baizhumanova TS, Grigor’eva VP, Zhumabek M, Aubakirov YA, Simakova I, Murzin D, Tungatarova S.A. (2023). Indistrial Engineering Chemistry Research 62:11439–11455. http://dx.doi.org/10.1021/acs.iecr.3c00272

Downloads

Published

2023-12-26

How to Cite

Manabayeva, A., Tungatarova, S., Sarsenova, R., Murzin, D., & Xanthopoulou, G. (2023). Effect of Ce promotion on catalytic activity of Ni-Al catalysts in dry reforming of methane. Combustion and Plasma Chemistry, 21(4), 249–255. https://doi.org/10.18321/cpc21(4)249-255