Perovskite catalysts for dry conversion of methane. Short review

Authors

  • N. Khudaibergenov Institute of combustion problems, Bogenbai Batyr Str., 172, Almaty, Kazakhstan
  • G. Yergaziyeva Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • K. Dosumov Institute of combustion problems, Bogenbai Batyr Str., 172, Almaty, Kazakhstan
  • M. Anisova Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan
  • M. Mambetova Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • N. Makayeva Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • K. Aliyev Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • A. Mendibay Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • M. Atamanov Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc21(1)53-70

Keywords:

Carbon dioxide conversion of methane, perovskite catalysts, synthesis gas.

Abstract

This review analyzes modern studies of the influence of the nature of perovskite catalyst systems on dry reforming of methane (DRM) and possible ways to improve perovskite catalysts for the production of synthesis gas from two greenhouse gases (CH4 and CO2) have been discussed. It has been established that the properties and catalytic activity of perovskite Ni, Fe, Co, La containing catalysts vary depending on the synthesis method used and the presence of promoters such as ZrO2, CeO2, K2O, and MgO. It has been shown that nanostructured perovskite catalysts with dispersed active-phase metal nanoparticles are highly reactive and stable at elevated temperatures. It has been shown that LaNiO3 perovskites are highly effective DRM catalysts, and the use of La2NiO4 as a precursor leads to high catalytic activity. Perovskite SrZrRuO3 showed high activity even under extreme conditions of high space velocity, which makes them promising catalysts for DRM. Various perovskite-based catalysts exhibit high catalytic performance and long-term stability without coking. In general, it follows from the literature review that further research is needed to optimize the physicochemical characteristics of perovskite catalysts for DRM. Perovskite-based catalysts have the potential to play a significant role in reducing greenhouse gas emissions of methane and carbon dioxide.

References

(1) Graça I, González LV, Bacariza MC, Fernandes A, Henriques C, Lopes JM, Ribeiro MF (2014) Applied Catalysis B: Environmental 147:101-110. https://doi.org/10.1016/j.apcatb.2013.08.010

(2) Mikulčić H, Skov IR, Dominković DF, Wan Alwi SR, Manan ZA, Tan R, Duić N, Mohamad SNH, Wang X (2019) Renewable and Sustainable Energy Reviews 114:109338. https://doi.org/10.1016/j.rser.2019.109338

(3) Tsiotsias AI, Charisiou ND, AlKhoori A, Gaber S, Sebastian V, Hinder SJ, Baker MA, Polychronopoulou K, Goula MA (2022) Journal of CO2 Utilization 61:102046. https://doi.org/10.1016/j.jcou.2022.102046

(4) Muraza O, Galadima A (2015) Energy Research 39:1196-1216. https://doi.org/10.1002/er.3295

(5) Usman M, Wan Daud WMA, Abbas HF (2015) Renewable and Sustainable Energy Reviews 45:710-744. https://doi.org/10.1016/j.rser.2015.02.026

(6) Zhao H, Zhang W, Song H, Zhao J, Yang J, Yan L, Qiao B, Chou L (2022) Catalysis Today 402:189-201. https://doi.org/10.1016/j.cattod.2022.03.038

(7) Ali S, Zagho MM, Al-Marri MJ, Arafat YI, Khader MM (2015) Proceedings of the 4th international gas processing symposium 111-116. https://doi.org/10.1016/B978-0-444-63461-0.50011-0

(8). Watthage SC, Song Z, Phillips AB, Heben MJ, (2018) Perovskite photovoltaics 43-88. https://doi.org/10.1016/B978-0-12-812915-9.00003-4

(9) Shi Z, Jayatissa AH (2018) Materials (Basel) 11:729. https://doi.org/10.3390/ma11050729

(10) Athayde DD, Souza DF, Silva AMA, Vasconcelos D, Nunes EHM, Diniz da Costa JC, Vasconcelos WL (2016) Ceramics International 42:6555-6571. https://doi.org/10.1016/j.ceramint.2016.01.130

(11) Wang Z, Ashok J, Pu Z, Kawi S (2017) Chemical Engineering Journal 315:315-323. https://doi.org/10.1016/j.cej.2017.01.015

(12) Hwang J, Rao RR, Giordano L, Katayama Y, Yu Y, Shao-Horn Y (2017) Science 358:751-756. https://doi.org/10.1126/science.aam7092

(13) Parravano G (1952) The Journal of Chemical Physics 20:342-343. https://doi.org/10.1063/1.1700412

(14) Maneerung T, Hidajat K, Kawi S (2017) International Journal of Hydrogen Energy 42:9840-9857. https://doi.org/10.1016/j.ijhydene.2017.01.060

(15) Yeo TY, Ashok J, Kawi S (2019) Renewable and Sustainable Energy Reviews 100:52-70. https://doi.org/10.1016/j.rser.2018.10.016

(16) Rameshan C, Li H, Anic H, Roiaz M, Pramhaas V, Rameshan R, Blume R, Haevecker M, Knudsen J, Knop-Gericke A, Rupprechter G (2018) Journal of Physics Condensed Matter 30:264007. http://dx.doi.org/10.1088/1361-648X/aac6ff

(17) Aramouni NAK, Touma JG, Abu Tarboush B, Zeaiter J, Ahmad MN (2018) Renewable and Sustainable Energy Reviews 82:25702585. https://doi.org/10.1016/j.rser.2017.09.076

(18) Wittich K, Kramer M, Bottke N, Schunk SA (2020) ChemCatChem 12:2130-2147. https://doi.org/10.1002/cctc.201902142

(19) Batiot-Dupeyrat C, Gallego GAS, Mondragon F, Barrault J, Tatibouët J-M (2005) Catal. Today 107-108:474-480. https://doi.org/10.1016/j.cattod.2005.07.014

(20) Gao XY, Jun LH, Hidajat K, Kawi S (2015) ChemCatChem 7:4188-4196. https://doi.org/10.3390/catal11081003

(21) Wang M, Zhao T, Dong X, Li M, Wang H (2018) Applied Catalysis B: Environmental 224:214-221. https://doi.org/10.1016/j.apcatb.2017.10.022

(22) Zhang G, Liu J, Xu Y, Sun Y (2018) Int J Hydrog Energy 0360-319943:15030-15054. http://dx.doi.org/10.1016/j.ijhydene.2018.06.091

(23) Gao XY, Hidajat K, Kawi S (2016) J CO2 Util 15:146-153. https://doi.org/10.1016/j.jcou.2016.05.007

(24) Bhattar S, Abedin MA, Kanitkar S, Spivey JJ (2021) Catal Today 365:2-23. https://doi.org/10.1016/j.cattod.2020.10.041

(25) Jang WJ, Shim JO, Kim HM, Yoo SY, Roh HS (2019) Catal Today 324:15-26. https://doi.org/10.1016/j.cattod.2018.07.032

(26) Gao Y, Jiang J, Meng Y, Yan F, Aihemaiti A (2018) Energy Convers Manag 171:133-155. https://doi.org/10.1016/j.enconman.2018.05.083

(27) Zhang P, Zhang Q, Liu J, Gao L (2018) J INORG MATER 33:1-2. https://doi.org/10.15541/jim20170585

(28) Gao XY, Wei TZ, Hidajat K, Kawi S (2017) Catal Today 281:250-258. https://doi.org/10.1016/j.cattod.2016.07.013

(29) Paramanik L, Subudhi S, Parida KM (2022) Mater Res Bull 155:111965. https://doi.org/10.1016/j.materresbull.2022.111965

(30) Voorhoeve RJ, Johnson DW, Remeika JP, Gallagher PK (1977) Science 195:827. https://doi.org/10.1126/science.195.4281.827

(31) Cybulski А (2007) Ind Eng Chem Res 46:4007-4033. https://doi.org/10.1021/ie060906z

(32) Fedorovskiy AE, Drigo NA, Nazeeruddin MK (2020) Small Methods 4:1900426. https://doi.org/10.1002/smtd.201900426

(33) Zhu J, Thomas A (2009) Appl Catal B 92:225-233. https://doi.org/10.1016/j.apcatb.2009.08.008

(34) Sheshko TF, Kryuchkova TA, Yafarova LV, Borodina EM, Serov YM, Zverev IA, Cherednichenko AG (2022) Sustain Chem Pharm 30:100897. https://doi.org/10.1016/j.scp.2022.100897

(35) Gallego GS, Mondragón F, Barrault J, Tatibouët JM, Batiot-Dupeyrat C (2006) Appl Catal A-Gen 311:164-171. https://doi.org/10.1016/j.apcata.2006.06.024

(36) Segal D (1991) Chemical Synthesis of Advanced Ceramic Materials, Cambridge University.

(37) Danks AE, Hall SR, Schnepp Z (2016), Mater Horizons 3:91-112. http://dx.doi.org/10.1039/C5MH00260E

(38) Abreu Jr. A, Zanetti SM, Oliveira MA, Thim GP (2005) J Eur Ceram Soc 25:743-748. http://dx.doi.org/10.1590/s1517-707620210002.1259

(39) Deganello F, Marcì G, Deganello G (2009) J Eur Ceram Soc 29:439-450. http://dx.doi.org/10.1016/j.jeurceramsoc.2008.06.012

(40) Sutka A, Mezinskis G (2012) Front Mater Sci 6:128-141. http://dx.doi.org/10.1007/s11706-012-0167-3

(41) Gaikwad SP, Dhage SR, Potdar HS, Samuel V, Ravi V J Electroceramics 14:83-87. http://dx.doi.org/10.1007/s10832-005-6588-y

(42) Žužić A, Ressler A, Macan J (2022) Solid State Commun 341:114594. http://doi.org/10.1016/j.ssc.2021.114594

(43) Byrappa K, Yoshimura M (2013) Handbook of Hydrothermal Technology (second ed.).

(44) Gan YX, Jayatissa AH, Yu Z, Chen X, Li M (2022) J Nanomater 1:8917013. http://dx.doi.org/10.1155/2020/8917013

(45) Soleymani M, Edrissi M (2016) Bull Mater Sci 39:487-490. http://dx.doi.org/10.1007/s12034-016-1164-4

(46) Wang C, Wang Y, Chen M, Liang D, Yang Z, Cheng W, Tang Z, Wang J, Zhang H (2021) Int J Hydrog Energy 46:5852-5874. http://dx.doi.org/10.1016/j.ijhydene.2020.10.240

(47) Grabchenko M, Pantaleo G, Puleo F, Kharlamova TS, Zaikovskii VI, Vodyankina O, Liotta LF (2021) Catal Today 382:71-81. http://dx.doi.org/10.1016/j.cattod.2021.07.012

(48) Zhang Z, Verykios XE, MacDonald SM, Affrossman S (1996) J Phys Chem C 100:744-754. https://doi.org/10.1021/JP951809E

(49) Provendier CP, Estournes C, Kiennemann A (1996) Stud Surf Sci Catal 119:741-746. https://doi.org/10.1016/S0167-2991(98)80520-X

(50) Pereñiguez R, Gonzalez-delaCruz VM, Caballero A, Holgado JP (2012) Appl Catal B 123-124:324-332. https://doi.org/10.1016/j.apcatb.2012.04.044

(51) Pereñíguez R, González-Dela Cruz VM, Holgado LP, Caballero A (2010) Appl Catal B 93:346-353. http://dx.doi.org/10.1016/j.apcatb.2009.09.040

(52) Chawl SK, George M, Patel F, Patel S (2013) Procedia Engineering 51:461-466. https://doi.org/10.1016/j.proeng.2013.01.065

(53) Chai Y, Fu Y, Feng H, Kong W, Yuan C, Pan B, Zhang J, Sun Y (2018) ChemCatChem 10(9). http://dx.doi.org/10.1002/cctc.201701483

(54) Du Z, Petru C, Yang X, Chen F, Fang S, Pan F, Gang Y, Zhou HC, Hu YH, Li Y (2023) J CO2 Util 67:102317. https://doi.org/10.1016/j.jcou.2022.102317

(55) Bertoldi J, Roseno KT, Schmal M, Lage VD, Lenzi GL, Brackmann R (2022) Int J Hydrog Energy 47:31279-31294. https://doi.org/10.1016/j.ijhydene.2022.07.053

(56) Qi R, Jin R, An L, Bai X, Wang Zh (2022) Catal Commun 163:106419. https://doi.org/10.1016/j.catcom.2022.106419

(57) Caprariis B, Filippis P, Palma V, Petrullo A, Ricca A, Ruocco A, Scarsella M (2016) Appl Catal A-Gen 517:47-55. https://doi.org/10.1016/j.apcata.2016.02.029

(58) Ruocco C, Caprariis B, Palma V, Petrullo A, Ricca A, Scarsella M, De Filippis P (2019) J CO2 Util. 30:222-231. http://dx.doi.org/10.1016/j.jcou.2019.02.009

(59) Gurav HR, Bobade R, Das VL, Chilukuri S (2012) Indian J Chem A 51(9):1339-1347. https://www.researchgate.net/project/Dry-reforming

(60) Nakamura T, Petzow G, Gauckler LJ (1979) Mater Res Bull https://www.researchgate.net/project/Solid-Oxide-Fuel-Cell-5

(61) Choudhary VR, Mondal KC, Mamman AS, Joshi UA (2005) Catal Letters 100:271-276. http://doi.org/10.1007/s10562-004-3467-0

(62) Osazuwa OU, Setiabudi HD, Rasid RA, Cheng CK (2017J Nat Gas Sci Eng 37:435-448. https://doi.org/10.1016/j.jngse.2016.11.060

(63) Oh JH, Kwon BW, Cho J, Lee CH, Kim MK, Choi SH, Yoon SP, Han J, Nam SW, Kim JY, Jang SS, Lee KB, Ham HC (2019) Ind Eng Chem Res 58:6385-6393. https://doi.org/10.1021/acs.iecr.8b05337

(64) Wang H., Dai H (2023) Fuel 340:127457. https://doi.org/10.1016/j.fuel.2023.12745

Published

— Updated on 2023-03-15

How to Cite

Khudaibergenov, N., Yergaziyeva, G., Dosumov, K., Anisova, M., Mambetova, M., Makayeva, N., Aliyev, K., Mendibay, A., & Atamanov, M. (2023). Perovskite catalysts for dry conversion of methane. Short review. Combustion and Plasma Chemistry, 21(1), 53–70. https://doi.org/10.18321/cpc21(1)53-70

Most read articles by the same author(s)