Morphological features of Co3O4 nanoparticles obtained by solution combustion method

Authors

  • A. Keneshbekova Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan
  • A. Imash Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave, Almaty, Kazakhstan
  • B. Kaidar Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan
  • E. Yensep Al-Farabi Kazakh National University, 71 Al-Farabi ave, Almaty, Kazakhstan
  • A. Ilyanov Al-Farabi Kazakh National University, 71 Al-Farabi ave, Almaty, Kazakhstan
  • M. Artykbayeva Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan
  • N. Prikhodko Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan; Gumarbek Daukeev Almaty University of Energy and Communications, 126/1 Baitursynuly str., Almaty, Kazakhstan
  • G. Smagulova Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc21(3)159-171

Keywords:

metal oxide nanomaterials, Со3О4 nanoparticles, solution combustion method, exothermic redox reaction, gas sensors

Abstract

The global environmental crisis has made it imperative to enhance tools and techniques for monitoring and analyzing environmental parameters. Gas sensors, crucial for air quality assessment, continually under go technological advancements to enhance accuracy and efficiency in detecting harmful substances. They play an essential role in ensuring safety in workplaces, urban areas, and industries, aiding pollution control efforts. Enhanced gas sensor performance hinges on careful selection and control of gas-sensitive materials and their structure. This involves optimizing gas-sensitive compounds, employing advanced materials, and developing technologies for sensitive and rapid substance detection. One promising compound for this purpose is Co3O4 oxide, synthesized efficiently using the solution combustion method. This method off ers simplicity and allows for precise control over product structures and properties, enabling customization for specific requirements and ensuring high detection efficiency and accuracy. In this study, Co3O4 particles were synthesized from a mixture of cobalt nitrate and glycine with the addition of nitric acid using the solution combustion method. The influence of nitric acid addition and the fuel-to-oxidizer ratio on the morphological characteristics of the cobalt oxide was investigated. The results from SEM, TEM, XRD, and SAXS analyses confi rmed that the addition of nitric acid and a fuel-rich mixture lead to nanoparticles with smaller diameter spread and more stable characteristics.

References

(1). Neri G (2015) Chemosensors 3(1):1-20. https://doi.org/10.3390/chemosensors3010001

(2). Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Sensors 10(3):2088-2106. https://doi.org/10.3390/s100302088

(3). Korotcenkov G (2008) Materials Science and Engineering: R: Reports. 61(1-6):1-39. https://doi.org/10.1016/j.mser.2008.02.001

(4). Barsan N, Koziej D, Weimar U (2007) Sensors and Actuators B: Chemical 121(1):18-35. https://doi.org/10.1016/j.snb.2006.09.047

(5). Chatterjee SG, Chatterjee S, Ray AK, Chakraborty AK (2015) Sensors and Actuators B: Chemical 221:1170-1181. https://doi.org/10.1016/j.snb.2015.07.070

(6). Liu H, Zhang L, Li KHH, Tan OK (2018) Micromachines 9(11):557. https://doi.org/10.3390/mi9110557

(7). Fine GF, Cavanagh LM, Afonja A, Binions R (2010) Sensors 10(6):5469-5502. https://doi.org/10.3390/s100605469

(8). Saritas S, Kundakci M, Coban O, Tuzemen S, Yildirim M (2018) Physica B: Condensed Matter 541:14-18. https://doi.org/10.1016/j.physb.2018.04.028

(9). Choi S, Bonyani M, Sun GJ, Lee JK, Hyun S K, Lee C (2018) Applied Surface Science 432:241-249. https://doi.org/10.1016/j.apsusc.2017.01.245

(10). Wang C, Cui X, Liu J, Zhou X, Cheng X, Sun P, Lu, G (2016) ACS Sensors 1(2):131-136. https://doi.org/10.1021/acssensors.5b00123

(11). Zhu L, Zeng W (2017) Sensors and Actuators A: Physical 267:242-261. https://doi.org/10.1016/j.sna.2017.10.021

(12). Kondalkar VV, Duy LT, Seo H, Lee K (2019) ACS applied materials & interfaces 11(29):25891-25900. https://doi.org/10.1021/acsami.9b06338

(13). Das S, Jayaraman V (2014) Progress in Materials Science 66:112-255. https://doi.org/10.1016/j.pmatsci.2014.06.003

(14). Nisar J, Topalian Z, De Sarkar A, Ö Sterlund L, Ahuja R. (2013) ACS applied materials & interfaces 5(17):8516-8522. https://doi.org/10.1021/am4018835

(15). Dong C, Zhao R, Yao L, Ran Y, Zhang X, Wang Y (2020) Journal of Alloys and Compounds 820:153194. https://doi.org/10.1016/j.jallcom.2019.153194

(16). Haiduk YS, Savitsky AA, Khort AA (2019) Russian Journal of Inorganic Chemistry 64:717-724. https://doi.org/10.1134/S003602361906007X

(17). Vojisavljević K, Wicker S, Can I, Benčan A, Barsan N, Malič B (2017) Advanced Powder Technology 28(4):1118-1128. https://doi.org/10.1016/j.apt.2016.10.029

(18). Deng J, Kang L, Bai G, Li Y, Li P, Liu X, Liang W (2014) Electrochimica Acta 132:127-135. http://dx.doi.org/10.1016/j.electacta.2014.03.158

(19). Liu Y, Zhang X (2009) Electrochimica Acta 54(17):4180-4185. https://doi.org/10.1016/j.electacta.2009.02.060

(20). Acedera RAE, Gupta G, Mamlouk M, Balela MDL (2020) Journal of Alloys and Compounds 836:154919. https://doi.org/10.1016/j.jallcom.2020.154919 0925-8388

(21). Toniolo JC, Takimi AS, & Bergmann CP (2010) Materials Research Bulletin 45(6):672-676. https://doi.org/10.1016/j.materresbull.2010.03.001

. Fılatova NV, Býshkova TM, Kosenko NF, BýgrovaIýS (2018) Scientific insight into the future [Naýchnyı vzglıad v býdýee] 3(11):112-118. https://doi.org/10.30888/2415-7538.2018-11-03-026

(23). Kozlovskiy AL, Zdorovets MV (2020) Composites Part B: Engineering 191:107968. https://doi.org/10.1016/j.compositesb.2020.107968

(24). Chaudhary A, Pathak DK, Ghosh T, Kandpal S, Tanwar M, Rani CK Kumar R (2020) ACS Applied Electronic Materials 2(6):1768-1773. https://doi.org/10.1021/acsaelm.0c00342

(25). Liu X, Yi R, Zhang N, Shi R, Li X, Qiu G (2008) Chemistry-An Asian Journal 3(4):732-738. https://doi.org/10.1002/asia.200700264

(26). Farahmandjou M (2016) Physical Chemistry Research 4(2):153-160. https://doi.org/10.22036/pcr.2016.12909

(27). Moro F, Tang SV Y, Tuna F, Lester E (2013) Journal of magnetism and magnetic materials 348:1-7. https://doi.org/10.1016/j.jmmm.2013.07.064

(28). Shinde VR, Mahadik SB, Gujar TP, Lokhande C D(2006) Applied Surface Science 252(20):7487-7492. https://doi.org/10.1016/j.apsusc.2005.09.004

(29). Thambidurai S, Gowthaman P, Venkatachalam M, Suresh S, Kandasamy M (2021) Journal of Alloys and Compounds 852:156997. https://doi.org/10.1016/j.jallcom.2020.156997

(30). Sinkó K, Szabó G, Zrínyi M (2011) Journal of Nanoscience and Nanotechnology 11(5):4127-4135. https://doi.org/10.1166/jnn.2011.3875

(31). Pudukudy M, Yaakob Z (2014) Chemical Papers 68:1087-1096. https://doi.org/10.30799/jnst.S01.19050308

(32). Dey A (2018) Materials science and Engineering: B 229:206-217. https://doi.org/10.1016/j.mseb.2017.12.036

(33). Patil SJ, Patil AV, Dighavkar CG, Thakare KS, Borase RY, Nandre SJ, Ahire RR (2015) Frontiers of Materials Science 9:14-37. https://doi.org/10.1007/s11706-015-0279-7

(34). Simonenko NP, Fisenko NA, Fedorov FS, Simonenko TL, Mokrushin AS, Simonenko EP, Kuznetsov NT (2022) Sensors 22(9):3473. https://doi.org/10.3390/s22093473

(35). Bhalerao KD, Khan M, Nakate YT, Kadam RM, Manzoor S, Masrat S, Ahmad R (2023) Surfaces and Interfaces 42:103350. https://doi.org/10.1016/j.surfi n.2023.103350

(36). Deng J, Zhang R, Wang L, Lou Z, Zhang T (2015) Sensors and Actuators B: Chemical 209: 449-455. https://doi.org/10.1016/j.snb.2014.11.141

(37). Zhang Z, Wen Z, Ye Z, Zhu L (2015) RSC advances 5(74):59976-59982. https://doi.org/10.1039/C5RA08536E

(38). Wang X, Yao S, Wu X, Shi Z, Sun H, & Que, R. (2015) RSC Advances 5(23):17938-17944. https://doi.org/10.1039/C4RA14450C

(39). Zhang P, Wang J, Lv X, Zhang H, Sun X (2015) Nanotechnology 26(27):275501. https://doi.org/10.1088/0957-4484/26/27/275501

(40). Lin Y, Ji H, Shen Z, Jia Q, Wang D (2016) Journal of Materials Science: Materials in Electronics 27:2086-2095. https://doi.org/10.1007/s10854-015-3995-y

(41). Jeong HM, Kim JH, Jeong SY, Kwak CH, Lee JH (2016) ACS Applied Materials & Interfaces 8(12):7877-7883. https://doi.org/10.1021/acsami.6b00216

(42). Park S, Sun GJ, Kheel H, Hyun SK, Jin C, Lee, C (2016) Metals and Materials International 22:156-162. https://doi.org/10.1007/s12540-015-5376-8

(43). Park S, Kim S, Kheel H, Lee C (2016) Sensors and Actuators B: Chemical 222:1193-1200. https://doi.org/10.1016/j.snb.2015.08.006

(44). Li S, Wei X, Zhu S, Zhou Q, Gui Y (2021) Journal of Alloys and Compounds 882:160710. https://doi.org/10.1016/j.jallcom.2021.160710

(45). Molavi R, Sheikhi MH (2018) Materials Letters 233:74-77. https://doi.org/10.1016/j.matlet.2018.08.087

(46). Fang H, Li S, Zhao H, Deng J, Wang D, Li J (2022) Sensors and Actuators B: Chemical 352:131068. https://doi.org/10.1016/j.snb.2021.131068

Downloads

Published

2023-10-23

How to Cite

Keneshbekova, A., Imash, A., Kaidar, B., Yensep, E., Ilyanov, A., Artykbayeva, M., Prikhodko, N., & Smagulova, G. (2023). Morphological features of Co3O4 nanoparticles obtained by solution combustion method . Combustion and Plasma Chemistry, 21(3), 159–171. https://doi.org/10.18321/cpc21(3)159-171

Most read articles by the same author(s)