Magnetite nanoparticles obtained by solution combustion synthesis

Authors

  • B. Kaidar Satbayev University, 22a Satbayev str., Almaty, Kazakhstan
  • A Lesbayev Satbayev University, 22a Satbayev str., Almaty, Kazakhstan
  • A. Imash Satbayev University, 22a Satbayev str., Almaty, Kazakhstan
  • D. Baskanbayeva Satbayev University, 22a Satbayev str., Almaty, Kazakhstan
  • D. Akalim Satbayev University, 22a Satbayev str., Almaty, Kazakhstan
  • A. Keneshbekova Satbayev University, 22a Satbayev str., Almaty, Kazakhstan
  • E. Yensep Satbayev University, 22a Satbayev str., Almaty, Kazakhstan
  • A. Ilyanov Satbayev University, 22a Satbayev str., Almaty, Kazakhstan
  • G. Smagulova Satbayev University, 22a Satbayev str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc21(3)147-157

Keywords:

solution combustion synthesis, magnetite nanoparticles, metal oxides

Abstract

This research presents a comprehensive investigation into the synthesis and characterization of magnetite nanoparticles through solution combustion reactions ignited by conventional means. In addition to the structural and compositional findings, this study's main investigation results include the specific surface area measurements conducted using the BET method. The analysis revealed specifi c surface area values for the synthesized magnetite nanoparticles at varying propellant-to-oxidant ratios, demonstrating a substantial decrease in specific surface area as the ratio increased. Specifically, specific surface areas of 72.203 m2/g for the 1:1 ratio, 22.240 m2/g for the 1:1.5 ratio, and 9.204 m2/g for the 1:2 ratio were determined. Furthermore, calculations based on the BET results and assuming spherical magnetite nanoparticles provided average particle sizes of 16±1 nm for the 1:1 ratio, 51±2 nm for the 1:1.5 ratio, and 125±4 nm for the 1:2 ratio. These findings highlight the impact of synthesis parameters on the nanoparticles' surface area and size, shedding light on their potential applications in various fields, including nanomedicine and magnetic diagnostics. Overall, this research contributes valuable insights into the synthesis, characterization, and tunable properties of magnetite nanoparticles, offering potential avenues for their utilization across diverse industries.

References

(1). Liang B, Li Z, Dixon S, Yu Y, Zhai G (2023) Sensors and Actuators A: Physical 361:114593. https://doi.org/10.1016/j.sna.2023.114593

(2). Zhang W, Guo Q, Duan Y, Xing C, Peng, Z (2022) IEEE Sensors Journal 22(11):10420-10427. https://doi.org/10.1109/JSEN.2022.3168068

(3). Zeng Z, Zhao H, Wang J, Lv P, Zhang T, Xia Q (2014) Journal of Power Sources 248:15-21. https://doi.org/10.1016/j.jpowsour.2013.09.063

(4). Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Colvin VL (2006) Science 314(5801):964-967. https://doi.org/10.1126/science.1131475

(5). Chakraborty I, Bose S, Chatterjee K (2023) Advanced Engineering Materials 25:2201363. https://doi.org/10.1002/adem.202201363

(6). Chavan N, Dharmaraj D, Sarap S, Surve C (2022) Journal of Drug Delivery Science and Technology 77:103899. https://doi.org/10.1016/j.jddst.2022.103899

(7). Huang HT, Garu P, Li CH, Chang WC, Chen BW, Sung SY, Wei ZH (2019, June) In Spin. World Scientific Publishing Company 9(2):1940002. https://doi.org/10.1142/S2010324719400022

(8). Kazakova O, Gallop J, Perkins G, Cohen L (2007) Applied physics letters 90(16). https://doi.org/10.1063/1.2724770

(9). Nguyen MD, Tran HV. Xu S, Lee TR. (2021) Applied Sciences 11(23):11301. https://doi.org/10.3390/app112311301

(10). Lin CC, Lai YP, Wu KY (2022) Powder Technology 395:369-376. https://doi.org/10.1016/j.powtec.2021.09.036

(11). Mansurov ZA, Smagulova GT, Kaidar BB, Lesbaev AB, Imash A. (2021) News from universities. Powder Metallurgy and Functional Coatings (4):68-76. https://doi.org/10.17073/1997-308X-2021-4-68-76

(12). Mansurov Z, Smagulova G, Kaidar B, Imash A, Lesbayev A (2022) Magnetochemistry 8(11):160. https://doi.org/10.3390/magnetochemistry8110160

(13). Su M, He C, Shih K (2016) Ceramics International 42(13):14793-14804. https://doi.org/10.1016/j.ceramint.2016.06.111

(14). Vuong TKO, Le TL, Pham DV, Pham HN, Le Ngo TH, Do HM, Nguyen XP (2015) Materials Chemistry and Physics 163:537-544. https://doi.org/10.1016/j.matchemphys.2015.08.010

(15). Lu T, Wang J, Yin J, Wang A, Wang X, Zhang T (2013) Colloids and Surfaces A: Physicochemical and Engineering Aspects 436:675-683. https://doi.org/10.1016/j.ceramint.2016.06.111

(16). Lemine OM, Omri K, Zhang B, El Mir L, Sajieddine M, Alyamani A, Bououdina M (2012) Superlattices and Microstructures 52(4):793-799. https://doi.org/10.1016/j.spmi.2012.07.009

(17). Yew YP, Shameli K, Miyake M, Khairudin N BBA, Mohamad, SEB, Naiki T, Lee K.X (2020) Arabian Journal of Chemistry 13(1):2287-2308. https://doi.org/10.1016/j.arabjc.2018.04.013

(18). Parnianfar H, Masoudpanah SM, Alamolhoda S, Fathi H (2017) Journal of Magnetism and Magnetic Materials 432:24-29. https://doi.org/10.1016/j.jmmm.2017.01.084

(19). Vyacheslavov AS, Pomerantseva EA, Gudilin EA (2006). Measurement of surface area and porosity by capillary condensation of nitrogen. The guidance paper, Moscow, Lomonosov Moscow State University. 30.

(20). Rezinkina MM (2009) Technical Physics 54(8):1092-1101. https://doi.org/10.1134/S1063784209080027

(21). Velikanov DA, Yurkin GY, Patrin GS (2008) Nauchnoe priborostroen (3):86-94.

(22). Neamakh MR, Sokolov VB (2013) Doklady BSUIR 2(72):26-30.

(23). Manikandan A, Vijaya JJ, Mary JA, Kennedy LJ, Dinesh A. (2014) Journal of Industrial and Engineering Chemistry 20(4):2077-2085. https://doi.org/10.1016/j.jiec.2013.09.035

(24). Parnianfar H, Masoudpanah SM, Alamolhoda S, Fathi H (2017) Journal of Magnetism and Magnetic Materials 432:24-29. https://doi.org/10.1016/j.jmmm.2017.01.084

(25). Wang X, Qin M, Cao Z, Jia B, Gu Y, Qu X, Volinsky AA (2016) Journal of Magnetism and Magnetic Materials 420:225-231. https://doi.org/10.1016/j.jmmm.2016.07.030

(26). Liu R, Huang W, Pan S, Li Y, Yu L, He D (2020) International Journal of Biological Macromolecules 162:1587-1596. https://doi.org/10.1016/j.ijbiomac.2020.07.283

(27). Baladi M, Amiri M, Salavati-Niasari M (2023) Arabian Journal of Chemistry 16(4):104575. https://doi.org/10.1016/j.arabjc.2023.104575

(28). Yeganeh-Faal A, Kadkhodaei M (2022) Results in Engineering 16:100599. https://doi.org/10.1016/j.rineng.2022.100599

(29) . Huang W, Pan S, Li Y, Yu L, Liu R (2020) International Journal of Biological Macromolecules 162:845-852. https://doi.org/10.1016/j.ijbiomac.2020.06.209

(30)Han CG, Sheng N, Zhu C, Akiyama T (2017) Materials Today Energy 5:187-195. https://doi.org/10.1016/j.mtener.2017.07.001

(31). Meng X, Yang W, Han G, Yu Y, Ma S, Liu W, Zhang Z (2020) Journal of Magnetism and Magnetic Materials 502: 166518. https://doi.org/10.1016/j.jmmm.2020.166518

(32). Muntean SG, Nistor MA, Ianoș R, Păcurariu C, Căpraru A, Surdu VA (2019) Applied Surface Science 481:825-837. https://doi.org/10.1016/j.apsusc.2019.03.161

Downloads

Published

2023-10-23

How to Cite

Kaidar, B., Lesbayev, A., Imash, A., Baskanbayeva, D., Akalim, D., Keneshbekova, A., Yensep, E., Ilyanov, A., & Smagulova, G. (2023). Magnetite nanoparticles obtained by solution combustion synthesis. Combustion and Plasma Chemistry, 21(3), 147–157. https://doi.org/10.18321/cpc21(3)147-157

Most read articles by the same author(s)