Manufacture of electrode materials for energy storage based on graphene-like carbon produced from onion husk
DOI:
https://doi.org/10.18321/cpc21(3)139-146Keywords:
supercapacitors, carbonization, activation, activated carbon, electrode, graphitization.Abstract
This work presents the synthesis of graphene-like carbon from onion husk used as a precursor for the manufacture of electrode materials for energy storage devices. Graphene-like carbon was synthesized from onion husk (OH) by pre-carbonization at 550 °C and subsequent thermochemical activation in KOH at 850 °C in a stainless-steel reactor. The structure and morphology of the obtained samples of graphene-like carbon were studied by SEM, X-ray diff raction analysis, and Raman spectroscopy. The electrochemical and cyclic CVC characteristics of the samples were carried out using an Elins P–40X potentiostat-galvanostat. The surface morphology of the GLC-OH sample during carbonization at 550 °C has a characteristic thermal stratifi cation of the material, which after activation in KOH at 850 °C, makes it possible to obtain a developed surface with fl akes of graphene-like carbon. The X-ray diff raction pattern shows broadened peaks in the 2 theta 40–50° region, which are characteristic of graphene like structures. Raman spectroscopy determined the formation of multilayer graphene with a large number of structural defects. The synthesized GLC OH powder was used as an active material in the assembly of a two-layer electrochemical capacitor. The electrochemical characterization of the assembled capacitor showed a specifi c capacitance value of 130 F/g and a Coulomb effi ciency of 94.7% at a gravimetric current density of 1000 mA/g. The obtained results demonstrate that the use of graphene like carbon from onion husk waste is a promising material for high-voltage supercapacitors.
References
(1). Sathyan TV, Thomas J, Thomas N (2023) 29 June. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.06.158
(2). Prashant D, Vishal S, Priyanka H. Maheshwari, Shashank S (2020) Carbon 170:5595. https://doi.org/10.1016/j.carbon.2020.07.056
(3). Amrita R, Saptarshi K, Ghosal R, Kinsuk N, Anil K (2021) ACS Omega 60:7746. https://doi.org/10.1021/acs.iecr.1c01710
(4). Gunasekaran S.S, Gopalakrishnan A, Subashchandrabose R, Badhulika S (2021) Journal of Energy Storage 42:103048. https://doi.org/10.1016/j.est.2021.103048
(5]. Fu HH, Chen L, Gao H, Yu X, Hou J, Wang G, Guo X (2020) Internationa Journal of Hydrogen Energy 45:1. https://doi.org/10.1016/j. ijhydene.2019.10.159.
. Jayachandran MS, Kishore B, Maiyalagan T, Rajadurai N, Vijayakumar T (2021) Materials Letters 301:130335. https://doi.org/10.1016/j.matlet.2021.130335
(7). He X, Ling P, Yu M, Wang X, Zhang X, Zheng M (2013) Electrochimica Acta 105:635-641. https://doi.org/10.1016/j.electacta.2013.05.050
(8). Song X, Ma X, Li Y, Liang D, Jiang R (2019) Applied Surface Science 487:89-197. https://doi.org/10.1016/j.apsusc.2019.04.277
(9). Liu Y, Wang X, Jiang X, Li X, Yu L (2018) Nanoscale 10: 22848–22860. https://doi.org/10.1039/C8NR06966B
(10). Zhu Y, Hu H, Li W, Zhang X (2007) Carbon 45:160-165. https://doi.org/10.1016/j.carbon.2006.07.010
(11). Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, Stephenson TJ, King’ondu CK, Holt CM, OO Hen BC, Tak JK, Harfi eld D, Anyia AO, Mitlin D (2013) ACS Nano 7:5131-5141. https://doi.org/10.1021/nn400731g
(12). Ashraf CM, Anilkumar KM, Jinisha B, Manoj M, Pradeep VS, Jayalekshmi S (2018) J. Electrochem. Soc. 165:A900-A909. https://doi.org/10.1149/2.0491805jes
(13). Liu B, Zhang L, Qi P, Zhu M, Wang G, Ma Y, Guo X, Chen H, Zhang B, Zhao Z, Dai B, Yu F (2016) Nanomaterial 6:18. https://doi.org/ 10.3390/nano6010018
(14). Balathanigaimani MS, Shim WG, Lee MJ, Kim C, Lee JW, Moon H (2008) Electrochem. Commun. 10:868–871. https://doi.org/10.1016/j.elecom.2008.04.003
(15). Dewei W, Shijia L, Guoli F, Guihong G, Jinfu M (2016) Electrochimica Acta 216. https://doi.org/10.1016/j.electacta.2016.09.053
(16). Yeleuov M, Daulbayev C, Taurbekov A, Abdisattar A, Ebrahim R, Kumekov S, Prikhodko N, Lesbayev B, Karakozov B (2021) Diamond & Related Material 119:108560. https://doi.org/10.1016/j.diamond.2021.108560
(17). Caturla F, Molina-Sabio M, Rodrí guez-Reinoso F (1991) Carbon 29:999-1007. https://doi.org/10.1016/0008-6223(91)90179-M
(18). Gopalakrishnan, A, Badhulika S (2021) Journal of Energy Storage 38:102533. https://doi.org/10.1016/j.est.2021.102533
(19). Gao Y, Zhou YS, Qian M, He XN, Redepenning J, Goodman P, Lu Y. F (2013) Carbon 51:52-58. https://doi.org/10.1016/j.carbon.2012.08.009
(20). Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) The Journal of Physical Chemistry C 113(30):13103-13107. https://doi.org/10.1021/jp902214f
(21). Gopalakrishnan A, Kong CY, Badhulika S (2019) New Journal of Chemistry 43(3):1186-1194. https://doi.org/10.1039/C8NJ05128C
(22). Chong HM, Hinder SJ, Taylor AC. (2016) J Mater Sci 51(19):8764-8790. https://doi.org/10.1007/s10853-016-0160-9
(23). Zhang LL, Zhao XS (2009) Chem. Soc. Rev. 38:2520. https://doi.org/10.1007/s10853-016-0160-9
(24). Fic K, Lota G, Meller M, Frackowiak E (2012) Energy Environ. Sci. 5:5842-5850. https://doi.org/10.1039/C1EE02262H
(25). Levie de R (1964) Electrochim. Acta 9:1231-1245. https://doi.org/10.1016/0013-4686(64)85015-5