Research on the application of microwave synthesis to obtain aluminum-containing coagulant

Authors

  • D.E. Fischer Institute of Metallurgy and Ore Benefiсiation, Satbayev University, 29/133, Shevchenko str., Almaty, Kazakhstan
  • Y.I. Kuldeyev Satbayev University, 22 Satbayev str., Almaty, Kazakhstan
  • N.A. Bektenov Institute of Metallurgy and Ore Beneficiation, Satbayev University, 29/133, Shevchenko str., Almaty, Kazakhstan
  • O.V. Atanova Institute of Metallurgy and Ore Beneficiation, Satbayev University, 29/133, Shevchenko str., Almaty, Kazakhstan
  • L.U. Amanzholova Institute of Metallurgy and Ore Beneficiation, Satbayev University, 29/133, Shevchenko str., Almaty, Kazakhstan
  • G.A. Toilanbay Institute of Metallurgy and Ore Beneficiation, Satbayev University, 29/133, Shevchenko str., Almaty, Kazakhstan
  • K.M. Smailov Institute of Metallurgy and Ore Beneficiation, Satbayev University, 29/133, Shevchenko str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc21(3)127-138

Keywords:

сoagulant, aluminum polyoxychloride, microwave inorganic synthesis, aluminum hydroxide

Abstract

The extensive way of industrial development and the rate of population growth determine the increase in the amount of drinking water consumed and the requirements for water treatment. Known and applied technologies for the industrial production of aluminum oxychloride coagulant used in reagent water purifi cation are based on high-temperature processes that require complex hardware design. The paper presents the results of studies on the production of basic aluminum chlorides by the microwave method. The experiments were carried out on a designed laboratory setup based on a microwave oven; data were obtained on the yield of aluminum polyoxychloride depending on the change in process parameters, duration, coeffi cient of effi ciency, and 36% concentration of hydrochloric acid solution. Studies of the use of microwave technologies in inorganic synthesis have shown the eff ectiveness of such technologies, a decrease in the reaction time, an increase in the effi ciency of the installation, and the absence of contact between the heating elements and the reaction mixture. The infl uence of sulfuric acid as a process activator substance, which positively aff ects the productivity of aluminum polyoxychlorides, has been established. The results of physicochemical studies of the synthesized samples and their coagulation properties are presented, which indicates the possibility of using microwave technologies in the inorganic synthesis of aluminum polyoxychloride coagulants.

References

(1). The general scheme of the complex use and water resources protection [Generalnaya schema kompleksnogo ispolzovaniya i okhrany vodnykh resursov. 2020. Water industry of Kazakhstan [Vodnoye khozyaystvo Kazakhstana] 2(87):4-58. (in Russian)

(2). Analytical report of the Association of Practicing Ecologists on the quality of surface and drinking water [Analiticheskiy doklad associacii praktikuyushikh ekologov po kachestvu poverkhnostnoy i pitievoi vody] 2021. (in Russian)

(3). Kenzhaliyev B, Imangalieva L, Manapova A, Azlan М (2022) Kaolinite clays as a source of raw materials for the aluminum industry of the Republic of Kazakhstan. Kompleksnoe ispolzovanie mineralnogo syria 319(4):5-12. https://doi.org/10.31643/2021/6445.34 eng

(4). Sohrabi Y, Rahimi Sh, Nafez AH, Mirzaei N, Bagheri A, Ghadiri SK, Rezaei S, Charganeh SS (2018) International Journal of Pharmaceutical research 15(3):188. https://doi.org/10.31838/ijpr/2018.10.03.071

(5). Ye C, Wang D, Shi B, Yu J, Qu J, Edwards M, Tang H (2007) Colloids and Surfaces A: Physicochemical and Engineering Aspects 294:163-173. https://doi.org/10.1016/j.colsurfa.2006.08.005

(6). Ghafari S, Aziz HA, Isa MH, Zinatizadeh AA (2009) Journal of hazardous materials 163(2-3):650-656. https://doi.org/10.1016/j.jhazmat.2008.07.090

(7). Qasim H. Malik. (2018) Applied Water Science 8:40. https://doi.org/10.1007/s13201-018-0662-5

(8). Jasmin. NA, Azeez JM, Shamkhi MS (2022) Open Engineering 12(1):890-904. https://doi.org/10.1515/eng-2022-0366

(9). Er-wei Song, Dong-zhan Han, Li-juan Qi, Feng jiang Zhou (2021) Light Metals. The Minerals. https://doi.org/10.1007/978-3-030-65396-5_3

(10). Tuychiyeva M (2021) The American Journal of Interdisciplinary Innovations and Research 3(05-31)192-201. https://doi.org/10.37547/tajiir/Volume03Issue05-31

(11). Jafar S (2022) Processes 10(7):1370. https://doi.org/10.3390/pr10071370

(12). Alyshanly GI (2021) Azerbaijan Chemical Journal 4:71. https://doi.org/10.32737/00052531-2021-4-71-76

(13). Valeev DV, Lainer YA, Samokhin AV, Sinayskiy MA, Mikhailova AB, Kutsev SV, Goldberg MA (2016) Inorganic Materials: Applied Research 7:779-785. https://doi.org/10.1134/S2075113316050269

(14). Sarmurzina RG, Boiko G., Kenzhaliyev BK, Karabalin US, Lyubchenko NP, Kenyaikin PV, Ilmaliyev ZhB (2023) Global Journal of Environmental Science and Management 9(4):673-690. https://doi.org/10.22034/gjesm.2023.04.2

(15). GOST R 58580-2019 Aluminum polyoxychloride. Specifi cations. [Polioksikhlorid aluminia. Tekhnicheskie usloviya]. Moscow, Russia. 2019. (in Russian)

(16). GOST R 51642-2000. Coagulants for potable water supply. General requirements and method of effi ciency determination [Koagulyanty dlya khozyaystvenno-pit’yevogo vodosnabzheniya. Obshchiye trebovaniya i metod opredeleniya eff ektivnosti] Moscow, Russia 2000. (in Russian)

(17). Matyushenko AI, Mironova OV, Pazenko TY, Kolova AF (2012) Bulletin of the Irkutsk State Technical University [Buleten Irkutskogo Gosudarstvennogo Tekhnicheskogo Universiteta] 5:129-134.

(18). Saxena VK, Usha Chandra (2011) Microwave Synthesis: A Physical Concept. Microwave Heating. P. 4-22. ISBN 978-953-307-573-0

(19). Kubrakova IV, Toropchenova ES (2013) Journal of Analytical Chemistry 68(6):467-476. https://doi.org/10.1134/S1061934813060099

(20). Rinaldi L, Carnaroglio D, Rotolo L, Cravotto G (2015) Journal of Chemistry 68:467-476. https://doi.org/10.1155/2015/879531

(21). Morschhäuser R, Krull M, Kayser Ch, Boberski C, Bierbaum R, Püschner PA, Glasnov TN, Kapp CO (2012) Green Processing and Synthesis 1(3):281-290. https://doi.org/10.1515/gps-2012-0032

(22). Leadbeater NE (2011). Microwave Heating as a Tool for Sustainable Chemistry. CRC Press, Taylor & Francis Group, London, United Kingdom. P. 1-24. ISBN: 9780429075339.

(23). Nüchter M, Ondruschka B, Bonrath W, Gum A (2004) Green Chemistry 6:128-141. https://doi.org/10.1039/B310502D.

(24). Nakamoto K (2009). Infrared and Raman Spectraof Inorganic and Coordination Compounds Part A: Theory and Applications in Inorganic Chemistry John Wiley & Sons, Inc., Hoboken, USA. ISBN:978-0-471-74493-1

(25). Siesler HW (2012) Polymer Science: A Comprehensive Reference 2:255-300. https://doi.org/10.1016/B978-0-12-803581-8.01318-7

(26). Chukanov NV, Vigasina MF (2019) IR Spectra of Minerals and Related Compounds, andReference Samples Data. Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds. Springer Mineralogy book series (MINERAL), New York, USA. P. 19-719. ISBN:978-3-030-26802-2.

Downloads

Published

2023-10-23

How to Cite

Fischer, D., Kuldeyev, Y., Bektenov, N., Atanova, O., Amanzholova, L., Toilanbay, G., & Smailov, K. (2023). Research on the application of microwave synthesis to obtain aluminum-containing coagulant. Combustion and Plasma Chemistry, 21(3), 127–138. https://doi.org/10.18321/cpc21(3)127-138