Solid sorbents for capturing carbon dioxide after fuel combustion. Short review

Authors

  • G. Yergaziyeva Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • K. Dosumov Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty
  • N. Makayeva Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • M. Anisova Institute of combustion problems, Bogenbai Batyr Str., 172, Almaty, Kazakhstan
  • M. Mambetova Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • N. Khudaibergenov Institute of combustion problems, Bogenbai Batyr Str., 172, Almaty, Kazakhstan
  • B. Serkebayev Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • A. Kabylbek Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • E. Akkazin Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc21(1)29-43

Keywords:

solid sorbents, carbon dioxide, capturing

Abstract

Carbon dioxide capture is an important and effective approach to controlling CO2 emissions from point sources such as fossil fuel power plants, industrial kilns, and cement plants. Currently, the most advanced CO2 capture technology is liquid amine scrubbing. Alternatively, solid sorbents can be used to effectively capture CO2 while eliminating the disadvantages associated with liquid amine sorbents. This review discusses some solid CO2 sorbents like zeolites, alkali, and alkaline earth metal oxides for capturing CO2 at moderate to high temperatures. The current state, problems, possibilities, and future directions of research on these sorbents are discussed.

References

(1) Godin J, Liu W, Ren S, Xu CC (2021) J. Environ Chem Eng 9:105644. https://doi.org/10.1016/j.jece.2021.105644

(2) Global Greenhouse Gas Emissions Data. (2021) 15 March. https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data.

(3) Kamkeng AD, Wang M, Hu J, Du W, Qian F (2021) Chemical Engineering Journal 409:128138. https://doi.org/10.1016/j.cej.2020.128138

(4) What Are The Disadvantages Of The Greenhouse Effect. (2022) 11 Jan. https://myassignmenthelp.com/blog/what-are-the-disadvantages-of-the-greenhouseeffect/

(5) Heuberger CF, Staffell I, Shah N, Dowell NM (2016) Energy Environ Sci 9:2497–2510. https://doi.org/10.1039/C6EE01120A

(6) Долгосрочное планирование энергетической системы. Анализ выполнения обязательств по Парижскому Соглашению с использованием технико-экономической модели TIMES для 16 регионов Казахстана. Брошюра: А. Керимрай, Б. Сулейменов, ЧУ «National Laboratory Astana» Nazarbayev University, Astana, 2016 44 с. ISBN 978-601-280821-6

(7) Xiao X, Gu J, Liang W, Yu Q, Tang M (2022) Chemistry and Industry 50:26–29.

(8) Xie H (2021) Chem Fert Chemicals 59:1–9.

(9) Wu B, Huang KR, Liu ZJ (2017) Chemistry and Industry 45:11–14.

(10) Su H, Cui L (2006) J Environ Sci Manag 31:79–81. https://doi.org/10.1002/ep.10145

(11) Megías-Sayago C, Bingre R, Huang L, Lutzweiler G, Wang Q and Louis B (2019) Front Chem 7:551. https://doi.org/10.3389/fchem.2019.00551

(12) Megías-Sayago C, Lara-Ibeas I, Wang Q, Le Calvé S, Louis B (2020) Front Chem 8:103724. https://doi.org/10.1016/j.jece.2020.103724

(13) Chen H, Wang W, Ding J, Wei X, and Lu J (2017) Energy Procedia 105:4370–4376. https://doi.org/10.1016/j.egypro.2017.03.929

(14) Pham TD, Hudson MR, Brown CM, and Lobo RF (2014) ChemSusChem 7:3031–3038. https://doi.org/10.1002/cssc.201402555

(15) Sharma U, Tyagi B, and Jasra RV (2008) Ind Eng Chem Res 47:9588–9595. https://doi.org/10.1021/ie800365t

(16) Sircar S, Golden TC, and Rao MB (1996) Carbon 34:1–12. https://doi.org/10.1016/0008-6223(95)00128-X

(17) Murakami Y, Iijima A, Ward JW (1986) Studies in Surface Science and Catalysis, Tokyo: Co-Published by Kodansha LTD 28:3–1091.

(18) Hasegawa K, and Matsumoto A (2017) Role of cation in target adsorption of carbon dioxide from CO2-CH4 mixture by low silica X zeolites. AIP Conference Process, Stanbul, Turkey P. 1865:020002. https://doi.org/10.1063/1.4993321

(19) Ribooga Chang, Xianyue Wu, Ocean Cheung and Wen Liu (2022) J Mater Chem A 10:1682–1705. https://doi.org/10.1039/d1ta07697c

(20) Hashem SM, Karami D and Mahinpey N (2020) Fuel 269:117432. https://doi.org/10.1016/j.fuel.2020.117432

(21) Olivares-Mar´ın M, Cuerda-Correa EM, Nieto-S´anchez A, Garc´ıa S, Pevida C and Rom´an S. (2013) Chem Eng J 217:71–81. https://doi.org/10.1016/j.cej.2012.11.083

(22) Kou X, Li C, Zhao Y, Wang S and Ma X (2018) Fuel Processing Technology 177:210–218. https://doi.org/10.1016/j.fuproc.2018.04.036

(23) Yoon HJ and Lee KB (2019) Chem Eng J 355:850–857. https://doi.org/10.1016/j.cej.2018.08.148

(24) Yan X, Li Y, Ma X, Zhao J, Wang Z and Liu H (2019) New Journal of Chemistry 43:5116–5125. https://doi.org/10.1039/C8NJ06257A

(25) Wei S, Han R, Su Y, Gao J, Zhao G and Qin Y (2019) Energy and Fuels 33:5398–5407. https://doi.org/10.1021/acs.energyfuels.9b00747

(26) Vall M, Hultberg J, Strømme M and Cheung O (2019) RSC Advances 9:20273–20280. https://doi.org/10.1039/C9RA02843A

(27) Hu Y, Guo Y, Sun J, Li H and Liu W (2019) J Mater Chem A 7:20103–20120. https://doi.org/10.1039/c9ta06930e

(28) Hwang BW, Lim JH, Chae HJ, Ryu HJ, Lee D, Lee JB, Kim H, Lee SC and Kim JC (2018) Process Saf Environ Prot 116:219–227. https://doi.org/10.1016/j.psep.2018.02.008

(29) Zhao X, Ji G, Liu W, He X, Anthony EJ and Zhao M (2018) Chem Eng J 332:216–226. https://doi.org/10.1016/j.cej.2017.09.068

(30) Guo Y, Tan C, Wang P, Sun J, Li W, Zhao C and Lu P (2020) Chem Eng J 379:122277. https://doi.org/10.1016/j.cej.2019.122277

(31) Ding YD, Song G, Zhu X, Chen R and Liao Q (2015) RSC Advances 5:30929–30935. https://doi.org/10.1039/C4RA15127E

(32) Hanif A, Dasgupta S and Nanoti A (2016) Industrial & Engineering Chemistry Research 55:8070–8078. (33) https://doi.org/10.1021/acs.iecr.6b00647

(33) Jin S, Ko KJ and Lee CH (2019) Chem Eng J. 371:64–77. https://doi.org/10.1016/j.cej.2019.04.020

(34) Han KK, Zhou Y, Chun Y and Zhu JH (2012) J Hazard Mater 203:341–347. https://doi.org/10.1016/j.jhazmat.2011.12.036

(35) Yang X, Liu W, Sun J, Hu Y, Wang W, Chen H, Zhang Y, Li X and Xu M (2016) ChemSusChem 9:1607–1613. https://doi.org/10.1002/cssc.201501699

(36) Cova F, Amica G, Kohopää K and Blanco MV (2019) Inorg Chem 58:1040–1047. https://doi.org/10.1021/acs.inorgchem.8b01297

(37) Gómez-Garduño N and Pfeiffer H (2019) Thermochim Acta 673:129–137. https://doi.org/10.1016/j.tca.2019.01.017

(38) Peltzer D, Mùnera J, Cornaglia L and Strumendo M (2018) Chem Eng J 336:1–11. https://doi.org/10.1016/j.cej.2017.10.177

(39) Vu AT, Ho K, Jin S and Lee CH (2016) Chem Eng J 291:161–173. https://doi.org/10.1016/j.cej.2016.01.080

(40) Lara-García HA, Ovalle-Encinia O, Ortiz-Landeros J, Lima E and Pfeiffer H (2019) J Mater Chem A 7:4153–4164. https://doi.org/10.1039/C8TA12359D

(41) Wang K, Hong J, Zhou Z, Lin Z and Zhao P (2019) Energy Technology 7:325–332. https://doi.org/10.1002/ente.201800229

(42) Yang X, Liu W, Sun J, Hu Y, Wang W, Chen H, Zhang Y, Li X, Xu M (2016) ChemSusChem 9:2480–2487. https://doi.org/10.1002/cssc.201600737

(43) Seggiani M, Stefanelli E, Puccini M and Vitolo S (2018) Chem Eng J 339:51–60. https://doi.org/10.1016/j.cej.2018.01.117

(44) Ceyhan AA, Sahin O, Baytar O, Saka C (2013) J Anal Appl Pyrolysis 104:378–383. https://doi.org/10.1016/j.jaap.2013.06.009

(45) Hadoun H, Sadaoui Z, Souami N, Sahel D, Toumert I. (2013) Appl Surf Sci 280:1–7. https://doi.org/10.1016/j.apsusc.2013.04.054

(46) Xu G, Lv Y, Sun J, Shao H, Wei L (2012) Clean 40:1093–1098. https://doi.org/10.1002/clen.201100738

(47) Dicko M, Guilmont M, Lamari F (2018) Current Sustainable Energy Reports 5:247–256. https://doi.org/10.1007/s40518-018-0116-6

(48) Liu WJ, Jiang H, Yu HQ (2015) Materials Chemistry Reviews 115:12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195

(49) Cunha MR, Lima EC, Lima DR, da Silva RS, Thue PS, Seliem MK, Sher F, dos Reis GS, Larsson SH (2020) J Environ Chem Eng 8:104506. https://doi.org/10.1016/j.jece.2020.104506

(50) da Paix˜ ao Cansado, Belo IP, Mira Mourao CR, Pesticides PA (2019) Environ Nanotechnol Monit Manag 12:100261. https://doi.org/10.1016/j.enmm.2019.100261

(51) Dabbawala AA, Ismail I, Vaithilingam BV, Polychronopoulou K, Singaravel G, Morin S, Berthod M, Al Wahedi Y (2020) Microporous Mesoporous Materials 303:110261. https://doi.org/10.1016/j.micromeso.2020.110261

(52) Danish M, Ahmad T (2018) Renew Sustain Energy Rev 87:1-21. https://doi.org/10.1016/j.rser.2018.02.003

(53) David E, Kopac J. (2014) J Anal Appl Pyrolysis 110:322–332. https://doi.org/10.1016/j.jaap.2014.09.021

(54) Pietrzak R, Nowicki P, Ka´zmierczak J, Kuszynska I, Goscianska J, Przepiorski J (2014) Chem Eng Res Des 92:1187–1191. https://doi.org/10.1016/j.cherd.2013.10.005

(55) Mohamad Nor, Chang LL, Tong LC, Mohamed AR (2013) J Environ Chem Eng 1:658-666. https://doi.org/10.1016/j.jece.2013.09.017

(56) Ello AS, De Souza LKC, Trokourey A, Jaroniec M (2013) Microporous Mesoporous Materials 180:280–283. https://doi.org/10.1016/j.micromeso.2013.07.008

(57) Plaza MG, Gonzalez AS, Pevida C, Pis JJ, Rubiera F (2012) Applied Energy 99:272–279. https://doi.org/10.1016/j.apenergy.2012.05.028

(58) Lee SY, Park SJ (2015) Ind Eng Chem Res 23:1–11. https://doi.org/10.1016/j.jiec.2014.09.001

(59) Ogungbenro AE, Quang DV, Al-Ali KA, Vega LF, Abu-Zahra MRM (2018) J Environ Chem Eng 6:4245–4252. https://doi.org/10.1016/j.jece.2018.06.030

(60) Many JJ, Gonz´ alez B, Azuara M, Arner G (2018) Chem Eng J 345:631–639. https://doi.org/10.1016/j.cej.2018.01.092

(61) Travis W, Gadipelli S, Guo Z (2015) RSC Advances 5:29558–29562. https://doi.org/10.1039/c4ra13026j

(62) Zhang Song W, Ma Q, Xie L, Zhang X, Guo H (2016) Energy Fuels 30:4181–4190. https://doi.org/10.1021/acs.energyfuels.5b02764

(63) Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q (2012) ACS Appl Mater Interfaces 4:5800–5806. https://doi.org/10.1021/am302077c

(64) Li M, Xiao R (2019) Fuel Processing Technology 186:35–39. https://doi.org/10.1016/j.fuproc.2018.12.015

(65) Wei H, Deng S, Hu B, Chen Z, Wang B, Huang J, Yu G (2012) ChemSusChem. 5:2354–2360. https://doi.org/10.1002/cssc.201200570

(66) Li D, Tian Y, Li L, Li J, Zhang H (2015) J Porous Mater 22:1581–1588. https://doi.org/10.1007/s10934-015-0041-7

(67) Serafin J, Baca M, Biegun M, Mijowska E, Kalenczuk RJ, Srenscek-Nazzal J. Michalkiewicz B. (2019) Applied Surface Science 497:143722 https://doi.org/10.1016/j.apsusc.2019.143722

Published

— Updated on 2023-03-15

How to Cite

Yergaziyeva, G., Dosumov, K., Makayeva, N., Anisova, M., Mambetova, M., Khudaibergenov, N., Serkebayev, B., Kabylbek, A., & Akkazin, E. (2023). Solid sorbents for capturing carbon dioxide after fuel combustion. Short review. Combustion and Plasma Chemistry, 21(1), 29–43. https://doi.org/10.18321/cpc21(1)29-43

Most read articles by the same author(s)