NEW POSSIBILITIES FOR STATIONARY PLASMA GENERATION BY MEANS OF NEAR-IR BAND LASERS
Keywords:
stationary plasma, a continuous optical discharge, dense plasma, xenon, laser, wavelengthAbstract
The paper represents recent studies of continuous optical discharge (COD) sustained in high pressure rare gases by fiber Yb lasers. First, it was found that threshold laser power for sustaining COD by λ ≈ 1 um laser radiation in high pressure Xe (tens watts) and Ar (hundreds watts) appeared to be considerably lower than could be expected, close or comparable to that for λ = 10.6 um radiation of CO2 lasers. This result revealed the important difference of plasma absorption mechanisms in midand near-IR bands. Then COD at λ ≈ 1 um was found to be stable in a wider range of F-numbers (f/d) of the laser beam focusing system, which indicates lower influence of laser beam refraction. Detailed investigation of the refraction mechanisms revealed plasma bistability effect, not previously observed in experiments with COD. Original results on COD plasma characteristics in high pressure argon and xenon obtained from recent experiments with ytterbium fiber lasers are also presented.
References
(1) Райзер Ю.П. // Письма в ЖЭТФ, 1970, Т. 11, В. 3, С. 195.
(2) Генералов Н.А., Зимаков В.П., Козлов Г.И., Масюков В.А., Райзер Ю.П. // Письма в ЖЭТФ, 1970, Т. 11, В. 9, С. 447.
(3) Суржиков С.Т. Физическая механика газовых разрядов // МГТУ им. Баумана, Москва, 2006.
(4) Keefer D.R. // Laser-induced plasmas and applications, Radziemski, L.J., Cremers, D.A., Eds. / Marcel Dekker, NY, P. 169, 1989.
(5) US patent # 7,435,982 // Laser driven light source / Smith D.K., 2008.
(6) Промышленные волоконные иттербиевые лазеры НТО «ИРЭ-Полюс»/ http://www.ntoirepolus. ru/products_powerful.html.
(7) Райзер Ю. П. Лазерная искра и распространение разрядов // М.:Наука, 1974.
(8) Flesch P. Light and light sources: High intensity discharge lamps / Springer-Verlag, Berlin, Heidelberg, 2006.
(9) Райзер Ю.П. Физика газового разряда /Долгопрудный, МО, изд. Интеллект, 2009.
(10) Биберман Л.М., Норман Г.Э. // УФН, 1967, Т. 91, В. 2, С. 193.
(11) Янков В.В. //Оптика и спектроскопия, 1963, Т. 14, №1, С. 29.
(12) Gidalevich E., Goldsmith S., Boxman R.L // Plasma Sources Sci. Technol., 2004, V. 13, P. 454.
(13) Klein L. // Applied Optics, 1968, V. 7, P. 677.
(14) Генералов Н.А., Зимаков В.П., Козлов Г.И., Масюков В.А., Райзер Ю.П. // ЖЭТФ, 1971, Т. 61, В. 1, С. 1434.
(15) Буфетов И.А., Прохоров А.М., Федоров В.Б., Фомин В.К. // Труды ИОФАН. Т. 10 / М.: Наука, 1988. С. 3.
(16) Sperber D., Eckel H.-A., Steimer S., Fasoulas S., //Contrib. Plasma Phys. 2012, V. 52, P. 636.
(17) Глова А.Ф., Лебедев Ф.В., Ярцев В.П. //Квантовая электроника, 1985, Т. 12, С. 2471.
(18) Козлов Г.И., Кузнецов В.А. // Письма ЖТФ, 1994, Т. 20, С. 197.
(19) Райзер Ю.П., Силантьев А.Ю., Суржиков С.Т.// ТВТ, 1987, Т. 25, №3, С. 454.
(20) Будник А.П., Вакуловский А.С., Попов А.Г., Суржиков С. Т. // Математическое моделирование, 1996, Т. 8, С. 3.
(21) Zimakov V.P., Kedrov A.Yu., Kuznetsov V.A., Shemyakin A.N., Solov'yov N.G., Yakimov M.Yu. // SPIE 7913-05, 2011.
(22) Zimakov V.P., Kuznetsov V.A., Shemyakin A.N., Solov'yov N.G., Shilov A.O., Yakimov M.Yu. // SPIE 8600-02, 2013