Synthesis of nanomaterials in a flame
DOI:
https://doi.org/10.18321/cpc21(1)17-27Keywords:
nanomaterials, fullerenes, nickel nanoparticles, grapheneAbstract
The article presents the results of experimental studies on the synthesis of fullerenes, nickel oxide nanoparticles and graphenes in a flame, which were carried out at the Institute of Combustion Problems. The article presents the conditions for the synthesis of C60 fullerenes in a pre-mixed benzene-oxygen flame with the application of an electric field and a pressure of 40 Torr. The maximum yield of C60 fullerenes up to 15% was found when a glow discharge was applied to the flame using a ring-plane interelectrode system. The conditions for the synthesis of nickel oxide nanoparticles in a diffusion propane-oxygen counterflow flame have been revealed, and it has been established that by varying the treatment time of the nichrome wire from 5 sec to 2 min, it is possible to control the size of the resulting nickel oxide nanoparticles from 70 to 700 nanometers, while the subsequent flame treatment is more than 2 min does not lead to appreciable changes in size. The conditions for the synthesis of graphenes in a coaxial flame have
been determined, and it has been established that by organizing coaxial combustion, by changing the types of fuels, it is possible to achieve conditions for obtaining graphenes with a given number of layers.
References
(1) Howard JB, McKinnon JT, Makarovsky Y. et al. (1991) Nature 352:139-141. https://doi.org/10.1038/352139a0
(2) Baum T, Loffler P, Weilmunster P, Homann K-H (1992) Ber. Bunsenges Phys. Chem. 96:841-857. https://doi.org/10.1002/bbpc.19920960702
(3) Grieco WJ, Howard JB, Rainey LC et al. (2000)Carbon 38:597-614. https://doi.org/10.1016/S0008-6223(99)00149-9
(4) Richter H, Grieco WJ, Howard JB (1999) Combust Flame 119:1-22. https://doi.org/10.1016/S0010-2180(99)00032-2
(5) Bachman M, Wiese W, Homann K-H (1995) Combust Flame 101:548-550. https://doi.org/10.1016/0010-2180(94)00276-X
(6) Ahrens J, Bachman M, Baum T, et al. (1994) Intern J Mass Spectrom Ion Process 138:133-148. https://doi.org/10.1016/0168-1176(94)04036-2
(7) Xie F, Chen Z, Wu Y, Tian H, Deng S, Xie S, Zheng L (2022) Nanomaterials 12:3087. https://doi.org/10.3390/nano12183087
(8) Murray JH, Howard JB, Jefferson W, Tester JB, Vander S (2004) Carbon 42:2295-2307. https://doi.org/10.1016/j.carbon.2004.05.010
(9) Chu H, Han W, Ren F, Xiang L, Wei Y, Zhang C (2018) ES Energy & Environment 2:73-81.
(10) Han W, Chu H, Ya Y, Dong S, Zhang C. (2019) Fuller Nanotub Carbon Nanostructures 27:265-272. https://doi.org/10.1080/1536383X.2019.1567500
(11) Han W, Zhou Y, Zhu T, Chu H. (2020) Appl Surf Sci 520:146317. https://doi.org/10.1016/j.apsusc.2020.146317
(12) Hong H, Xiong G, Dong Z, Kear BH, Stephen DT (2021) Carbon 182:307-315. https://doi.org/10.1016/j.carbon.2021.05.011
(13) Mansurov ZA (2021) Eurasian Chem-Technol J 23:235-245. https://doi.org/10.18321/ectj1127
(14) Mansurov ZA (2018) Eurasian Chem-Technol J 20:277-281. https://doi.org/10.18321/ectj760
(15) Prikhodko NG (2018) Combustion Science and Technology 190:1923-1934. https://doi.org/10.1080/00102202.2018.1472588
(16) Qian M, Xu C, Gao Y (2018) Mater Sci Eng: B 238:149-154. https://doi.org/10.1016/j.mseb.2018.11.023
(17) Iyer MSK, Patil S, Singh AV (2022) Trans Indian Natl Acad Eng 7:787-807. https://doi.org/10.1007/s41403-022-00329-z
(18) Meierhofer F, Fritsching U (2021) Energy & Fuels 35:5495-5537. https://doi.org/10.1021/acs.energyfuels.0c04054
(19) Homann KH (1998) Angewandte Chemie 110:2572-2590. https://doi.org/10.1002/(SICI)1521-3757(19980918)110:18<2572::AID-ANGE2572>3.0.CO;2-B
(20) Memon NK, Tse SD, Al-Sharab JF, Yamaguchi H, Goncalves A-MB, Kear BH, Jaluria Y, Andrei EY (2011) Carbon 49:5064-5070. https://doi.org/10.1016/j.carbon.2011.07.024
(21) Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS (2008) Appl Phys Lett 93:103-113. https://doi.org/10.1063/1.2986409
(22) Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Nano Lett 9:30–35. https://doi.org/10.1021/nl801827v