FORMATION OF NANO-CARBON MATERIALS IN A ELECTRIC-ARC PLASMATRON

Authors

  • V.E. Messerle Institute of Thermal Physics SB of the RAS, 630070, Novosibirsk, str. academician Lavrentiev, 1
  • A.B. Ustimenko Scientific-Research Institute of Experimental and Theoretical Physics 050040, Almaty, al-Farabi str., 71
  • V.Zh. Ushanov Scientific-Research Institute of Experimental and Theoretical Physics 050040, Almaty, al-Farabi str., 71
  • E.I. Karpenkо Institute of Physics of Materials SB of the RAS, 670047, Ulan-Ude, Cah’yanovoi str., 6
  • V.G. Lukyachshenko Institute of Combustion Problems, 050012, Almaty, Bogenbai batira str., 172

Keywords:

nanocarbon materials, plasma generators, nanotechnology, coal-fired boilers, gas mixture

Abstract

This paper presents results of physico-chemical study of the deposit formed on the electrodes of an arc plasmatron when applying propane-butane mixture in the electrode gap. The studies were performed by means of optical, electronic, and Raman microscopy. According to Raman spectra various forms of nanocarbon were identified in the cathode deposit. Fact of synthesis of maleic anhydride and its covalent grafting to nanographite during operation plasmatron was found. It is shown that this construction arc plasmatron with supply of hydrocarbon gas can be considered as a mini-reactor for the synthesis of different forms of nanocarbon, the surface and physical-chemical properties modification.

References

(1) Galiay Ph. Code of Conduct for Responsible Nanosciences and Nanotechnologies Research in Europe // Nanotec-2009. it. Nanotechnology, Competitiveness and innovation for industrial growth / Book of abstracts, March 31 – April 3, 2009, Italy, Rome, National Research Council. P. 23.

(2) Голыш В.И., Карпенко Е.И., Лукьященко В.Г., Мессерле В.Е., Устименко А.Б., Ушанов В.Ж. Высокоресурсный электродуговой плазмотрон // Химия высоких энергий. 2009. Т.43. №4. С.371-376.

(3) Ильин А.М., Мессерле В.Е., Устименко А.Б. Формирование углеродных нанотрубок на медных электродах в условиях электродугового разряда // Химия высоких энергий. 2010. Т. 44. № 4. С. 354–359.

(4) Ошанина И.В., Брук Л.Г., Темкин О.Н. Альтернативные методы получения продуктов основного органического синтеза. М.: МИТХТ, 2002. 106 c.

(5) Ramon K.S. Almeida, Julio C.P. Melo, Airoldi Claudio. A new approach for mesoporous carbon organofunctionalization with maleic anhydride // Microporous and Mesoporous Materials. 2013. V. 165. P. 168–176. https://doi.org/10.1016/j.micromeso.2012.08.023

(6) Cancado L.G., Takai K., and Enoki T. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy // Applied Physics Letters. 2006. V. 88. P. 163106. https://doi.org/10.1063/1.2196057

(7) Ahmad Umair, Tehseen Z. Raza, Hassan Raza. On the Crystal Size Studies of Pyrolytic Carbon by Raman Spectroscopy // Mesoscale and Nanoscale Physics. Submitted to Cornell University Library on 26 Mar 2013, arXiv:1303.6364

Published

2015-04-20

How to Cite

Messerle, V., Ustimenko, A., Ushanov, V., Karpenkо E., & Lukyachshenko, V. (2015). FORMATION OF NANO-CARBON MATERIALS IN A ELECTRIC-ARC PLASMATRON. Combustion and Plasma Chemistry, 13(2), 103–109. Retrieved from https://cpc-journal.kz/index.php/cpcj/article/view/315