Investigation of graphene aerogels as a porous carbon matrix for lithium-sulfur batteries

Authors

  • F. Sultanov National Laboratory Astana, 53, Kabanbay Batyr ave., Astana, Kazakhstan; Nazarbayev University, 53, Kabanbay Batyr ave., Astana, Kazakhstan
  • A. Zhaisanova National Laboratory Astana, 53, Kabanbay Batyr ave., Astana, Kazakhstan; L.N. Gumilyov Eurasian National University, 13, Kazhymukan str., Astana, Kazakhstan
  • A. Mentbayeva National Laboratory Astana, 53, Kabanbay Batyr ave., Astana, Kazakhstan; Nazarbayev University, 53, Kabanbay Batyr ave., Astana, Kazakhstan
  • Zh. Dzhakupova L.N. Gumilyov Eurasian National University, 13, Kazhymukan str., Astana, Kazakhstan

DOI:

https://doi.org/10.18321/cpc543

Keywords:

graphene aerogel, sulfur, lithium-sulfur batteries, discharge capacity, lithium polysulfides.

Abstract

Lithium-sulfur batteries are a new generation of energy storage systems due to their high theoretical capacity (1675 mAh/g), specific energy consumption (2600 W·h·kg-1) and operational safety. Moreover, this type of batteries is attractive in view of the replacement of expensive metal-based cathode materials (nickel, cobalt) with cheap and available sulfur. However, the industrial use of lithium-sulfur batteries is limited by the low electrical conductivity of sulfur, the dissolution of its products in the electrolyte, and the volumetric expansion during cyclic charge-discharge of batteries due to the high density difference between sulfur and its products (lithium polysulfides). This paper demonstrates the possibility of using graphene-based aerogels as a porous electrically conductive matrix for sulfur immobilization in order to form cathodes for lithium sulfur batteries. The developed cathode material based on graphene aerogel and sulfur demonstrated a high value of the initial discharge capacity (1313 mAh/g) with its average decrease by 0.5% per 1 cycle during 75 chargedischarge cycles (0.1 C). The obtained results demonstrate that graphene-based aerogels are
promising materials for sulfur immobilization due to their high porosity, light weight, and electrical conductivity.

References

(1). Ma L, Hendrickson K, Wei Sh, Archer L (2015) Nano Today 10(3):315-338. https://doi.org/10.1016/j.nantod.2015.04.011

(2). Fang R, Zhao Sh, Sun Zh, Wang D-W, Cheng H-M, Li F (2017) Adv. Mater. 29(48):1606823. https://doi.org/10.1002/adma.201606823

(3). Wang D-W, Zeng Q, Zhou G, Yin L, Li F, Cheng H-M, Gentle I, Lu G-Q (2013) J. Mater. Chem. A. 1(33):9382. https://doi.org/10.1039/C3TA11045A

(4). Hofmann AF, Fronczek DN, Bessler WG (2014) Journal of Power Sources 259:300-310. https://doi.org/10.1016/j.jpowsour.2014.02.082

(5). Guo J, Xu Y, Wang C (2011) Nano Lett. 11(10):4288-4294. https://doi.org/10.1021/nl202297p

(6). Ji X, Lee KT, Nazar LF (2009) Nature Mater. 8:500-506. https://doi.org/10.1038/nmat2460

(7). Zhang C, Wu HB, Yuan C, Guo Z, Lou XWD (2012) Angew. Chem. Int. Ed. 51:9592-9595. https://doi.org/10.1002/anie.201205292

(8). Zhang J., Yang C-P, Yin Y-X, Wan L-J, Guo Y-G (2016) Adv. Mater. 28:9539-9544. https://doi.org/10.1002/adma.201602913

(9). Ma L, Zhuang Y-G, Wei S, Hendrickson KE, Kim MS, Cohn G, Hennig RG, Archer LA (2016) ACS Nano. 10:1050-1059. https://doi.org/10.1021/acsnano.5b06373

(10). Zu C, Fu Y, Manthiram A (2013) J. Mater. Chem. A. 1:10362. https://doi.org/10.1039/c3ta11958k

(11). Zhang Z, Kong L-L, Liu S, Li G-R, Gao X-P (2017) Adv. Energy Mater. 7:1602543. https://doi.org/10.1002/aenm.201602543

(12). Ma L, Chen R, Zhu G, Hu Y, Wang Y, Chen T, Liu J, Jin Z (2017) ACS Nano 11:7274-7283. https://doi.org/10.1021/acsnano.7b03227

(13). Pu J, Shen Z, Zheng J, Wu W, Zhu C, Zhou Q, Zhang H, Pan F (2017) Nano Energy 37:7-14. https://doi.org/10.1016/j.nanoen.2017.05.009

(14). Deng D-R, Xue F, Jia Y-J, Ye J-C, Bai C-D, Zheng M-S, Dong Q-F (2017) Co4N ACS Nano 11:6031-6039. https://doi.org/10.1021/acsnano.7b01945

(15). Fang R, Zhao S, Sun Z, Wang D-W, Amal R, Wang S, Cheng H-M, Li F (2018) Energy Storage Materials 10:56-61. https://doi.org/10.1016/j.ensm.2017.08.005

(16). Rehman S, Guo S, Hou Y (2016) Adv. Mater. 28:3167-3172. https://doi.org/10.1002/adma.201506111

(17). Li Z, Zhang J, Guan B, Wang D, Liu L-M, Lou XW (2016) Nat Commun. 7:13065. https://doi.org/10.1038/ncomms13065

(18). Li S, Cen Y, Xiang Q, Aslam MK, Hu B, Li W, Tang Y, Yu Q, Liu Y, Chen C (2019) J. Mater. Chem. A. 7:1658-1668. https://doi.org/10.1039/C8TA10422K

(19). Cheng D, Wu P, Wang J, Tang X, An T, Zhou H, Zhang D, Fan T (2019) Carbon 143:869-877. https://doi.org/10.1016/j.carbon.2018.11.032

(20). Li B, Xiao Q, Luo Y (2018) Materials & Design 153:9-14. https://doi.org/10.1016/j.matdes.2018.04.078

(21). Cavallo C, Agostini M, Genders JP, Abdelhamid ME, Matic A (2019) Journal of Power Sources 416:111-117. https://doi.org/10.1016/j.jpowsour.2019.01.081

(22). Gómez-Urbano JL, Gómez-Cámer JL, Botas C, Rojo T, Carriazo D (2019) Journal of Power Sources 412:408-415. https://doi.org/10.1016/j.jpowsour.2018.11.077

(23). Sultanov F, Bakbolat B, Daulbayev Ch, Urazgalieva A, Azizov Z, Mansurov Z, Pei SS (2016) Combustion and Plasma Chemistry. 14(2):105-112

Published

2022-09-12

How to Cite

Sultanov, F., Zhaisanova, A., Mentbayeva, A., & Dzhakupova, Z. (2022). Investigation of graphene aerogels as a porous carbon matrix for lithium-sulfur batteries. Combustion and Plasma Chemistry, 20(3), 183–190. https://doi.org/10.18321/cpc543