Features of the influence of carbon nanotubes and nanoviles on the electrochemical characteristics of composite electrodes for electrochemical capacitors

Authors

  • N.C. Abeykoon University of Texas at Dallas, 800 W Campbell Rd, 75080-3021 Richardson, USA
  • Zh.A. Supiyeva Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, Bogenbai Batyr Str., 172, Almaty, Kazakhstan
  • Zh.E. Ayaganov Казахский национальный университет имени аль-Фараби, пр. аль-Фараби 71, Алматы, Казахстан; Институт проблем горения, Богенбай батыра 172, Алматы, Казахстан
  • V.V. Pavlenko Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, Bogenbai Batyr Str., 172, Almaty, Kazakhstan
  • Z.A. Mansurov Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, Bogenbai Batyr Str., 172, Almaty, Kazakhstan
  • A.A. Zakhidov University of Texas at Dallas, 800 W Campbell Rd, 75080-3021 Richardson, USA
  • Yu.V. Surovikin Center for New Chemical Technologies, 54, Neftezavodskaya st., Omsk, Russia

DOI:

https://doi.org/10.18321/cpc542

Keywords:

polyacrylonitrile nanofibers (PAN), carbon nanotubes (CNTs), electrochemical capacitors, rice husks (RH), activated carbon (AC).

Abstract

In this work, we studied the effect of various conductive agents on the electrochemical characteristics of electrodes for supercapacitors with an aqueous electrolyte. Activated carbon with a high specific surface area obtained by chemical activation of carbonized rice husks has been used as the active material of composite electrodes. Various conductive agents were tested, represented by carbon nanofibers based on polyacrylonitrile (PAN), multilayer carbon nanotubes and commercial acetylene black
(Timcal SUPER C65). Electrochemical studies were carried out by cyclic voltammetry. The most effective reduction in electrode resistance, as well as high efficiency at different sweep rates was achieved when multi-walled carbon nanotubes (MWNTs) were used as a conductive additive. Our study shows that the use of electrode composites consisting of activated carbon derived from an
available biomass precursor, in combination with a conductive additive based on carbon nanotubes, leads to an increase in the performance of energy storage systems, in particular electrochemical capacitors.

References

(1). Conway BE (1999) Electrochemical supercapacitors – scientific fundamentals and technological applications, Kluwer Academic, Plenum Publishers, New York, USA. ISBN 978-1-4757-3058-6

(2). Miller JR, Simon P (2008) Electrochemical Capacitors for Energy Management 321:651-652. https://doi.org/10.1126/science.1158736

(3). Chen Y, Ma Y (2010) Carbon 49(2):573-580. https://doi.org/10.1016/j.carbon.2010.09.060

(4). Ruiz V, Blanco C, Khomenko V, Santamar R (2007) Electrochim. Acta 52(15)4969-4973. https://doi.org/10.1016/j.electacta.2007.01.071

(5). He X, Ling P, Yu M, Wang X, Zhang X, Zheng M (2013) Electrochim. Acta 105:635-641. https://doi.org/10.1016/j.electacta.2013.05.050

(6). He X, Ling P, Qiu J, Yu M, Zhang X, Yu C (2013) J. Power Sources 240:109-113. https://doi.org/10.1016/j.jpowsour.2013.03.174.

(7). Liu M, Kong L, Zhang P, Luo Y, Kang L (2012) Electrochim. Acta. 60:443-448. https://doi.org/10.1016/j.electacta.2011.11.100.

(8). Kumagai S, Sato M, Tashima D (2013) Electrochim. Acta 114:617-626. https://doi.org/10.1016/j.electacta.2013.10.060.

(9). Pavlenko VV, Abbas Q, Przygocki P, Kon T, Supiyeva Z, Abeykoon N (2018) Eurasian Chem.-Technol. J. 20(2):99-105. https://doi.org/10.18321/ectj695

(10). Azat S, Busquets R, Pavlenko VV, Kerimkulova AR, Whitby RLD, Z.A. Mansurov (2014) Applied Mechanics and Materials 467:49-51. https://doi.org/10.4028/www.scientific.net/AMM.467.49.

(11). Azat S, Pavlenko VV, Kerimkulova AR, Mansurov ZA (2012) Advanced Materials Research 535-537:1041-1045. https://doi.org/10.4028/www.scientific.net/AMR.535-537.1041.

(12). Lebedeva MV, Yeletsky PM, Ayupov AB, Kuznetsov AN, Yakovlev VA, Parmon VN (2015) Mater. Renew. Sustain. Energy. 4:20

https://doi.org/10.1007/s40243-015-0061-x.

(13). Kuroda S, Tobori N, Sakuraba M, Sato Y (2003) Journal of Power Sources 121:924-928. https://doi.org/10.1016/S0378-7753(03)00230-1.

(14). Takamura T, Saito M, Shimokawa A, Nakahara C (2000) Journal of Power Sources 90(1):45-51. https://doi.org/10.1016/S0378-7753(00)00446-8

(15). Zheng C, Zhou X, Cao H, Wang G, Liu Z (2014) J. Power Sources. 258:290-296. https://doi.org/10.1016/j.jpowsour.2014.01.056.

(16). Raccichini R, Varzi A, Passerini S, Scrosati B (2015) Nat. Mater. 14:271-279. https://doi.org/10.1038/NMAT4170.

(17). Zhang J, Zhang X, Zhou Y, Guo S, Wang K, Liang Z, Xu Q (2014) ACS Sustainable Chem. Eng. 2(6):1525-1533. https://doi.org/10.1021/sc500221s

(18). Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT (2011) Advanced Materials 23(42):4828-4850. https://doi.org/10.1002/adma.201100984.

(19). Reneker DH, Yarin AL (2000) Journal of Applied Physics 87:4531. https://doi.org/10.1063/1.373532

(20). Norris ID, Shaker MM, Ko FK, Macdiarmid AG (2000) Synthetic Metals 114(2):109-114. https://doi.org/10.1016/S0379-6779(00)00217-4

(21). Yarns NN, Ko BF, Gogotsi Y, Ali A, Naguib N, Ye H, Yang G, Li C, Willis P (2003) Advanced Materials 15(14):1161-1165. https://doi.org/10.1002/adma.200304955.

(22). Barranco V, Oya A, Pico F, Iban J (2010) J. Phys. Chem. C 114(22):10302-10307. https://doi.org/10.1021/jp1021278

(23). Haq S, Silva SRP (2003) Nature Materials 1:165-168. https://doi.org/10.1038/nmat755

Published

2022-09-12 — Updated on 2022-09-12

How to Cite

Abeykoon, N., Supiyeva, Z., Ayaganov, Z., Pavlenko, V., Mansurov, Z., Zakhidov, A., & Surovikin, Y. (2022). Features of the influence of carbon nanotubes and nanoviles on the electrochemical characteristics of composite electrodes for electrochemical capacitors. Combustion and Plasma Chemistry, 20(3), 175–181. https://doi.org/10.18321/cpc542

Most read articles by the same author(s)

<< < 1 2 3 4