CREATION OF NEW TYPES OF NANOCARBON COMPOSITE MATERIALS

Authors

  • F.R Sultanov Institute of Combustion Problems, Bogenbay Batyr st., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, al-Farabi ave. 71, Almaty, Kazakhstan
  • G.T. Smagulova Institute of Combustion Problems, Bogenbay Batyr st., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, al-Farabi ave. 71, Almaty, Kazakhstan

Keywords:

nanotechnology, nanomaterials, nanostructures, fullerenes, carbon nanotubes, catalysts, fiberglass

Abstract

Investigations in the field of nanotechnology and nanomaterials are most relevant directions of modern science. Manipulation with material on the atomic and molecular levels allows researchers to create entirely new materials that have unique physicochemical properties. With development and achievements in the field of nanotechnology, many problems of materials science, electronics and engineering in general are solved. Among a wide range of nanomaterials, the class of carbon nanomaterials occupies a special status, thanks to the discovery of fullerenes and carbon nanotubes, which have a number of unique electrical, physical, mechanical and optical properties. The paper presents studies results of carbon nanotubes synthesis on catalysts received by solution combustion method on fiberglass and creation on this basis flexible heating elements and obtaining of nanostructured graphene based aerogels. The paper is dedicated to the 70th anniversary of the Professor, Doctor of chemical sciences, Zulkhair Mansurov, who is a significant figure in Kazakhstan science, outstanding modern scientist. Professor Mansurov developed new directions in the field of nanotechnologies, which actively implemented at the Institute of Combustion Problems and have already been applied and implemented in solving a number of major applied problems.

References

(1) Riemenschneider J., Mahrholz T., Mosch J., Monner H.P. and Melcher J. Carbon nanotubes – smart material of the future: Experimental investigation of the system response // II ECCOMAS thematic conference on smart structures and materials: Materials and Processes. – Lisbon, Portugal, 2005. – P. 18-25.

(2) Baughman R.H., Zakhidov A.A., de Heer A.W. Carbon nanotubes – the route toward applications // Science. – 2002. – Vol. 297. – P. 787- 792. https://doi.org/10.1126/science.1060928

(3) Мансуров З.А. Получение наноматериалов в процессах горения // Физика горения и взрыва. – 2012. – Т. 48. № 5. – С. 77-86.

(4) Forró L., Schönenberger Ch. Carbon nanotubes, materials for the future // Europhys. News. – 2001. – Vol. 32, № 3. – P. 86-90. https://doi.org/10.1051/epn:2001303

(5) De Volder M.F.L., Tawfick S.H., Baughman R.H., Hart A.J. Carbon Nanotubes: Present and Future Commercial Applications // Science. – 2013. – Vol. 339. – P. 535-539. https://doi.org/10.1126/science.1222453

(6) Раков Э.Г. Пиролитический синтез углеродных нанотрубок и нановолокон // Журнал Российского химического общества им. Д.И. Менделеева. – 2004. – Т. XLVIII, № 5. – С. 12-20.

(7) Khavrus’ V.A., Lemesh N.V., Gordeychuk S.V., Tripolskii A.I., Ivashchenko T.S., Strizhak P.E. Synthesis of multi-walled carbon nanotubes by pyrolysis of ethylene on metals nanoparticles (Ni, Co, Fe) // Nanosystems, Nanomaterials, Nanotechnologies. – 2008. – Vol. 6, № 3. – P. 919-929.

(8) Aldashukurova, G.B., Mironenko, A.V., Mansurov, Z.A., Rudina, N.A., Itshenko, A.V., Ushakov, V.A., andIsmagilov, Z.R., Carbon dioxide conversion of methane into synthesis-gas on glass cloth catalysts, Eurasian Chem.-Technol. J., 2010, vol. 12, no. 2, pp. 97–103. https://doi.org/10.18321/ectj31

(9) Smagulova G.T., Kim S., Prikhod’ko N.G., Lesbayev B.T., Mironenko A.V., Zakhidov A.A., Mansurov Z.A Smart Electroconductive Textile by Catalytic Deposition of Carbon Nanotubes onto Glass Cloth // International Journal of Self-Propagating High-Temperature Synthesis. – 2016. – Vol. 25, № 3. – P. 173-176. https://doi.org/10.3103/S1061386216030122

(10) Hu H., Zhao Z., Zhou Q., Zhou Y., QiuJ. Direct polymer infiltration of graphene aerogels for the production of conductive nanocomposite // Материалы международной конференции Carbon – Бразилия, Рио-де-Жанейро. – 2013. – P.152-155.

(11) Hu H., Zhao Z., Wan W., Gogotsi Yu., Qiu J. Polymer/Graphene Hybrid Aerogel with High Compressibility, Conductivity, and “Sticky” Superhydrophobicity // ACS Appl. Mater. Interfaces. – 2014. – Т. 6. – С. 3242-3249. https://doi.org/10.1021/am4050647

(12) Kim K.H., Youngseok Oh., Islam M.F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue // Nature Nanotech. – 2012. – Т. 10. – С. 1-5. https://doi.org/10.1038/nnano.2012.118

(13) Aliev A.E. Giant-stroke, superelastic carbon nanotube aerogel muscles // Science. – 2009. – Т. 323. – С. 1575-1578. https://doi.org/10.1126/science.1168312

(14) Bryning M.B. Carbon nanotube aerogels // Adv. Mater. – 2007. – Т. 19. – С.661-664. https://doi.org/10.1002/adma.200601748

(15) Kim K.H., Vural M., Islam M.F. Single wall carbon nanotube aerogel-based elastic conductors // Adv. Mater. – 2011. – Т. 23. – С. 2865- 2869. https://doi.org/10.1002/adma.201100310

(16) Sultanov F.R., Mansurov Z.A., Daulbayev Ch., Urazgaliyeva A.A., Bakbolat B., Pei Sh.Sh. Study of sorption capacity and surface morphology of carbon nanomaterials/chitosan based aerogels // Eurasian Chemico- Technological Journal. – 2016. – V.18. – P.19-24 https://doi.org/10.18321/ectj388

Published

2017-02-06

How to Cite

Sultanov, F., & Smagulova , G. (2017). CREATION OF NEW TYPES OF NANOCARBON COMPOSITE MATERIALS. Combustion and Plasma Chemistry, 15(1), 48–58. Retrieved from https://cpc-journal.kz/index.php/cpcj/article/view/238

Most read articles by the same author(s)