Obtaining fibrous composite materials by electrospinning method and their application

Authors

  • Z.N. Kurbanova al-Farabi Kazakh National University, Almaty, Kazakhstan; Institute of Combustion Problems, Almaty, Kazakhstan
  • G.T. Smagulova Institute of Combustion Problems, Almaty, Kazakhstan; al-Farabi Kazakh National University, Almaty, Kazakhstan.
  • B.B. Kaidar Institute of Combustion Problems, Almaty, Kazakhstan; al-Farabi Kazakh National University, Almaty, Kazakhstan.

Keywords:

composite carbon - polymer fi bers, polymethyl methacrylate, electrospinning, carbonized rice husks.

Abstract

Carbon-polymer fibers were obtained by the method of electrospinning, consisting of polymethylmethacrylate with a modified filler in the form of a carbonized rice husk. Electrospinning for simplicity of hardware, high efficiency and scalability, right up to industrial installations, is one of the most promising methods of obtaining fibers with a diameter of several millimeters to nanometer order. The effect of PMMA concentration on fiber characteristics was investigated. Analysis of optical microscopy images showed that for 1 wt.% PMMA solution: CRS fibers have a transverse width of 1.25 to 3.75 μm, in which the diameter of the carbonized rice husks particles varies from 2.5 to 6.25 μm. For 3 wt.% PMMA: CRSF fiber diameter lies in the range from 3.9 μm to 8 μm, and the particle size lies in the range from 6.1 μm to 14 μm. Analysis of images of scanning electron microscopy images showed that for 1 wt.% PMMA solution, the fiber diameter lies in the range from 330 nm to 1 μm, for 3 wt.% solution of PMMA from 3 to 6 μm, respectively. To analyze the measurement results, 22.7 mg/g for 1 wt.% solution and 281.5 mg/g for 3 wt.% solution. Nanofibers can form a highly porous grid, as well as their protection against nuclear weapons, environmental protection, health, biotechnology, environmental engineering, defense and security.

References

(1) William A. Goddard III, Donald Brenner, Sergey Edward Lyshevski. Handbook Nanoscience, Engineeering and Technology: Handbook. 978 (2007). https://doi.org/10.1201/9781420007848

(2) Chan C. K., Patel R.N., O’Connell J.N. Solution-grown silicon nanowires for lithium-ion battery anodes // ACS Nano. 4 (1) 1443–1450 (2010). https://doi.org/10.1021/nn901409q

(3) Lee B.H., Jang S.Y, Jo M.J. Charge transport characteristics of high efficiency dye-sensitized solar cells based on electrospun TiO2 nanorod photoelectrodes // The Journal of Physical Chemistry C. 113 (1) 21453–21457 (2009). https://doi.org/10.1021/jp907855x

(4) Курбанова З.Н., Терюкалова Н.В., Ким С., Смагулова Г.Т., Приходько Н.Г., Мансуров З.А. Получение композиционных волокон на основе ПММА и рисовой шелухи методом электроспиннига // Горение и плазмохимия. 120–121 (2016).

(5) Bhardwaj N., Kundu S.C. Electrospinning: A fascinating fiber fabrication technique // Biotechnology Advances. 28 (3), 325–347 (2010). https://doi.org/10.1016/j.biotechadv.2010.01.004

(6) Deitzel J.M., Kleinmeyer J., Harris D., and Beck Tan N.C. The effect of processing variables on the morphology of electrospun nanofibers and textiles // Polymer. 42 (4) 261–272 (2001). https://doi.org/10.1016/S0032-3861(00)00250-0

(7) Laudenslager M.J., Sigmund W.M. Electrospinning: Encyclopedia of Nanotechnology. 2 (1) 769–775 (2012).

(8) Megelski J.S. Stephens D., Bruce Chasen J.F. Micro- and nanostructured surface morphology on electrospun polymer fibers // Macromolecules. 35 (22) 8456–8466 (2002). https://doi.org/10.1021/ma020444a

(9) Yarin A.L., Koombhongse S., and Reneker D.H. Bending instability in electrospinning of nanofibers // Journal of Applied Physics. 89 (1) 3018–3026 (2001). https://doi.org/10.1063/1.1333035

(10) Rho K.S., Jeong G. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing // Biomaterials. 27 (8) 1452–1461 (2006). https://doi.org/10.1016/j.biomaterials.2005.08.004

(11) Yarin A., Koombhongse S., and Reneker D. Bending instability in electrospinning of nanofibers // Journal of Applied Physics. 89 (1) 3018–3026 (2001). https://doi.org/10.1063/1.1333035

(12) Haider A., Gupta K.C., Kang I.K. Morphological effects of HA on the cell compatibility of electrospun HA/PLGA composite nanofiber scaffolds // BioMed Res. 25 (4) 1–11 (2014). https://doi.org/10.1155/2014/308306

(13) Lannutti J., Reneker D., Ma T., Tomasko D., Farson D., Electrospinning for tissue engineering scaffolds // Mater. Sci. Eng. 27 (3) (2007) 504–509. https://doi.org/10.1016/j.msec.2006.05.019

(14) Pelipenko J., Kristl J., Jankovic B., Baumgartner S., Kocbek P. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers // Int. J. Pharm. 456 (1) 125–134 (2013). https://doi.org/10.1016/j.ijpharm.2013.07.078

(15) Wenguo. Electrospun Nanofibrous Materials for Tissue Engineering and Drug Delivery // Science and Technology of Advanced Materials. 11 (1) 1–11 (2010). https://doi.org/10.1088/1468-6996/11/1/014108

(16) Zhu X., Yu G., Zho S., Weng, J., Li X., Cui W. Investigation of Drug Release and Matrix Degradation of Electrospun Poly(dl-lactide) Fibers with Paracetanol Inoculation // Biomacromolecules. 7 (5) 1623–1629 (2006). https://doi.org/10.1021/bm060057z

(17) Yang Y., Zhu X., Cui W., Li X., Jin Y. Electrospun Composite Mats of Poly[(D,L-lactide)-co-glycolide] and Collagen with High Porosity as Potential Scaffolds for Skin Tissue Engineering // Macromolecular Materials and Engineering. 294 (9) 611-619 (2012). https://doi.org/10.1002/mame.200900052

(18) Dayal, P., Liu, J., Kumar S., Kyu, T. (Experimental and Theoretical Investigations of Porous Structure Formation in Electrospun Fibers // Macromolecules. 40 (1) 7689–7694 (2002). https://doi.org/10.1021/ma071418l

(19) Goodenough J.B., Park K.S. The Li-ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 135 (4) 1167–1176 (2013). https://doi.org/10.1021/ja3091438

(20) Endo A. Fabrication of Electrospinning-Derived Carbon Nanofiber Webs for the Anode Material of Lithium-ion Secondary Batteries // Adv. Funct. Mater. 16 (18) 2393–2397 (2006). https://doi.org/10.1002/adfm.200500911

(21) Suthat A., Chase G. Chemical Engineer. 8–26 (2001).

(22) Graham K., Ouyang M., Raether T., Grafe T., McDonald B., Knauf P. Fifteenth Annual Technical Conference and Expo of the American Filtration and Separations Society, Galveston. 123-127 (2002)

(23) Groitzsch D., Fahrbach E. US patent 4,618,524, (1986).

(24) Angadjivand SA, Schwartz MG, Eitzman PD, Jones ME. US patent, 6375886. (2002).

(25) Thomas, P. Penicot, P. Contal, D. Leclerc, J. Vendel, Chem. Eng. Sci. 3548–3549 (2001). https://doi.org/10.1016/S0009-2509(01)00041-0

(26) Qin S.Y., Wang J. Appl. Polym. Sci. 102, 1285 (2006). https://doi.org/10.1002/app.24361

(27) Sharma V.K., Yngard R.A., Lin A. Adv. Colloid Interface Sci. 144–145 (2009). https://doi.org/10.1016/j.cis.2008.09.002

(28) Homaeigohar S.S.; Elbahri M. Novel compaction resistant and ductile nanocomposite nanofibrous microfiltration membranes // J. Colloid Interface Sci. 6–15 (2012). https://doi.org/10.1016/j.jcis.2012.01.012

(29) Pyankov O.V, Usachev E.V, Pyankova I.E., Aerosol Sci. Technol. 1294–1295 (2012). https://doi.org/10.1080/02786826.2012.708948

(30) Selvam A.K, Nallathambi G., Fibers Polym. 16, 1326–1327 (2015). https://doi.org/10.1007/s12221-015-1327-8

(31) Stoimenov K., Klinger R.L., Marchin G.L., Langmuir 18, 6679-6680 (2002). https://doi.org/10.1021/la0202374

(32) Uslu G., Demirci A., Regan J.M. Disinfection of synthetic and real municipal waste water effluent by flow-through pulsed UV-light treatment system // J. Water Process Eng. 89–97 (2016). https://doi.org/10.1016/j.jwpe.2016.02.004

(33) Jiang J., Zhu, L., Zhu L., Zhang H., Zhu B., Xu Y. “Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly (n-vinyl pyrrolidone)”, ACS Appl. Mater. Interfaces. 5, 12895–12904. https://doi.org/10.1021/am403405c

(34) Олонцев В.Ф., Минькова А.А. Исследование адсорбционной активности углеродных материалов // Master’s journal. 87–97 (2013).

Published

2018-12-10

How to Cite

Kurbanova, Z., Smagulova, G., & Kaidar, B. (2018). Obtaining fibrous composite materials by electrospinning method and their application. Combustion and Plasma Chemistry, 16(3-4), 172–180. Retrieved from https://cpc-journal.kz/index.php/cpcj/article/view/211

Most read articles by the same author(s)

1 2 > >>