Production of composite fibers by the electrospinning method using plant waste raw materials

Authors

  • B.B. Kaidar Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • A.A. Imash Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • S. Azat Satbayev University, st. Satpaeva, 22, Almaty, Kazakhstan
  • E.Ye. Tynyshtykkyzy Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • G.T. Smagulova Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • B.Kh. Seitov Almaty Technological University, 100 Tole Bi st., Almaty, Kazakhstan
  • Z.A. Mansurov Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc20(4)315-322

Keywords:

composite carbon fibers, polyacrylonitrile, activated carbon, silicon dioxide SiO2, electrospinning, composite nanomaterials

Abstract

Activated carbon (AC) and silica SiO2 are among the important and affordable filter media for gases and liquids due to their highly porous structure and specific surface area. Activated carbon is produced in various forms, namely powder, granules and, more recently, fibers or fibrous matrices. Silicon dioxide is synthesized as a powder from various plant materials. In general, a decrease in the particle size of activated carbons and silicon dioxide to nanosizes leads to a sharp change in characteristics as a result of an increase in the specific surface area. Therefore, this paper considers the synthesis of composite fibers based on polyacrylonitrile (PAN) with the addition of AC components and silicon dioxide SiO2 by electrospinning. In addition, their porous structure was studied. The resulting PAN/SiO2 and PAN/AC composite fibers have a sorption capacity of 0.822 mg/g and 1.93 mg/g, respectively. Thus,PAN/AC have a higher adsorption capacity than PAN/SiO2. The surface morphology and structural characteristics of PAN/AC and PAN/SiO2 composite fibers were studied using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). In addition, tests were carried out for sorption characteristics by atomic absorption spectroscopy with respect to manganese (II) ions.

References

(1) Sarkar K, Gomez C, Zambrano S, Ramirez M, de Hoyos E, Vasquez H, Lozano K (2010) Materials Today 13(11):12-14. https://doi.org/10.1016/S1369-7021(10)70199-1

(2) Xue J, Wu T, Dai Y, Xia Y (2019) Chemical reviews 119(8):5298-5415. https://doi.org/10.1021/acs.chemrev.8b00593

(3) Tian J, Deng H, Huang M, Liu R, Yi Y, Dong X (2019) Electrospinning: Nanofabrication and applications 455-516. https://doi.org/10.1016/B978-0-323-51270-1.00015-7

(4) Lu P, Murray S, Zhu M (2019) Electrospinning: Nanofabrication and Applications. 695-717. https://doi.org/10.1016/B978-0-323-51270-1.00023-6

(5) Mishra R, Militky J, Venkataraman M (2018) Nanotechnology in Textiles 35-161. https://doi.org/10.1016/B978-0-08-102609-0.00002-X

(6) Feng Y, Li H (2017) Comprehensive Supramolecular Chemistry II. Elsevier 3–25. https://doi.org/10.1016/B978-0-12-409547-2.12636-8

(7) Parvej MS, Khan MI, Hossain MK (2022) Woodhead Publishing 55-94. https://doi.org/10.1016/B978-0-12-824272-8.00013-0

(8) Nune SK, Rama KS, Dirisala VR, Chavali MY (2017) Nanostructures for novel therapy 281-311. https://doi.org/10.1016/B978-0-323-46142-9.00011-6

(9) Jeong HE, Wang Y, Li B (2006) Nano Letters 6(7):1508-1513. https://doi.org/10.1021/nl061045m

(10) Xing X, Wang Y, Li B (2008) Optics Express 16(14):10815-10822. https://doi.org/10.1364/OE.16.010815

(11) Suzuki A, Arino K (2012) European Polymer Journal 48(7):1169-1176. https://doi.org/10.1016/j.eurpolymj.2012.04.003

(12) Cheng Q, Zhang Y, Zheng X, Sun W, Li BT, Wang D, Li Z (2021) Separation and Purification Technology 262:118312. https://doi.org/10.1016/j.seppur.2021.118312

(13) Wang W, Nie W, Zhou X, Feng W, Chen L, Zhang Q, You Z, Shi Q, Peng C, He C (2018) Acta Biomaterialia 79:168-181. https://doi.org/10.1016/j.actbio.2018.08.014

(14) Mansurov Z, Mofa NN, Shabanova TA (2011) Key Engineering Materials 484:230-240. https://doi.org/10.4028/www.scientific.net/KEM.484.230

(15) Askaruly K, Azat S, Sartova Z, Yeleuov M, Kerimkulova A, Bekseitova K (2020) Journal of Chemical Technology & Metallurgy 1:88-97. https://doi.org/10.32734/jcnar.v1i2.1257

Published

2022-12-11

How to Cite

Kaidar, B., Imash, A., Azat, S., Tynyshtykkyzy, E., Smagulova, G., Seitov, B., & Mansurov, Z. (2022). Production of composite fibers by the electrospinning method using plant waste raw materials. Combustion and Plasma Chemistry, 20(4), 315–322. https://doi.org/10.18321/cpc20(4)315-322