Investigation of initial plant biomass for volume production of graphene-like structures

Authors

  • N.G. Prikhodko Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Almaty University of Energy and Communications named after G. Daukeev, 126/1, Baitursynov str., Almaty, Kazakhstan
  • M.A. Yeleuov Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan
  • K. Askaruly Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Almaty University of Energy and Communications named after G. Daukeev, 126/1, Baitursynov str., Almaty, Kazakhstan; Satpayev University, 22, Satpayev str., Almaty, Kazakhstan
  • A.B. Tolynbekov Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • A.T. Taurbekov Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • A.A. Abdisattar Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Satbayev University, 22a Satpayev Street, Almaty, Kazakhstan
  • M.K. Atamanov Institute of combustion problems, Bogenbay Batyr Str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc20(4)303-313

Keywords:

waste biomass, wheat straw, wheat bran, rice husk, graphene-like structures, carbonization

Abstract

Graphene is an attractive two-dimensional material with excellent mechanical, electrical and thermal properties. Mass production of
high-quality graphene has attracted more and more attention of researchers in recent years. In most modern methods for the synthesis of graphene, purified chemical reagents are used, which are expensive for large-scale production. Moreover, for some applications, such highquality graphene obtained by CVD, PVD methods is not required. The search for a technologically simple and ecologically clean method for the synthesis of graphene for mass production is extremely necessary. In the paper, morphological,
structural and thermogravimetric properties of plant biomass waste were investigated by physico-chemical methods for the purpose of obtaining graphene-like structures from them by a combined method (hydrothermal treatment with physico-chemical activation). Samples of wheat straw, wheat bran and rice husk are proposed and studied as bioprecursors. The obtained data made it possible to draw a conclusion about the perspective of the original biomass by using it as biprecursors for the subsequent synthesis of graphene-like structures by the proposed method.

References

(1) Geim AK, Novoselov KS (2007) Nature Materials 6:183-191. https://doi.org/10.1038/nmat1849

(2) Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Small 7(14):1876-1902. https://doi.org/10.1002/smll.201002009

(3) Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306(5696):666-669. https://doi.org/10.1126/science.1102896

(4) Singh V, Joung D, Zhai L, Das S, Khondaker SL, Seal S (2011) Progress in Materials Science 56(8):1178-1271. https://doi.org/10.1016/j.pmatsci.2011.03.003

(5) Zhang Y, Zhang LY, Zhou CW (2013) Accounts of Chemical Research 46(10):2329-2339. https://doi.org/10.1021/ar300203n

(6) Huang H, Chen S, Wee ATS, Chen W (2014) Graphene 3-26. https://doi.org/10.1533/9780857099334.1.3

(7) Park S, Ruoff RS (2009) Nature Nanotechnology 4:217-224. https://doi.org/10.1038/nnano.2009.58

(8) Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806-4814. https://doi.org/10.1021/nn1006368

(9) Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558-1565. https://doi.org/10.1016/j.carbon.2007.02.034

(10) Muramatsu H, Kim YA, Yang K-S, Cruz-Silva R, Toda I, Yamada T, Terrones M, Endo M, Hayashi T, Saitoh H (2014) Small 10(14):2766-2770. https://doi.org/10.1002/smll.201400017

(11) Seitzhanova MA, Mansurov ZA, Yeleuov M, Roviello V, Di Capua R (2019) Eurasian Chem.-Technol. J. 21:149-156. https://doi.org/10.18321/ectj825

(12) Kong X, Zhu Y, Lei H, Wang C, Zhao Y, Huo E, Lin X, Zhang Q, Qian M, Mateo M, Zou R, Fang Z, Ruan R (2020) Chemical Engineering Journal 399:125808. https://doi.org/10.1016/j.cej.2020.125808

(13) Ruiz-Hitzky E, Darder M, Fernandes FM, Zatile E, Palomares FJ, Aranda P (2011) Adv. Mater. 23:5250-5255. https://doi.org/10.1002/adma.201101988

(14) Seo DH, Rider AE, Han ZJ, Kumar S, Ostrikov KK (2013) Adv. Mater. 25:5638-5642. https://doi.org/10.1002/adma201301510

(15) Ruan G, Sun Z, Peng Z, Tour JM (2011) ACS Nano 5:7601-7607. https://doi.org/10.1021/nn202625c

(16) Raghavan N, Thangavel S, Venugopal G (2017) Applied Materials Today 7:246-254. https://doi.org/10.1016/j.apmt.2017.04.005

(17) Gupta SS, Sreeprasad TS, Maliyekkal SM, Das SK, Pradeep T (2012) ACS Appl. Mater. Interfaces 4(8):4156-4163. https://doi.org/10.1021/am300889u

(18) Chen F, Yang J, Bai T, Long B, Zhou X (2016) J. Electroanalytical Chemistry 768:18-26. https://doi.org/10.1016/j.jelechem.2016.02.035

(19) Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Renewable Energy 37:19-27. https://doi.org/10.1016/j.renene.2011.06.045

(20) Beaugrand J, Reis D, Guillon F, Debeire P, Chabbert B (2004) Int. J. Plant Sciences 165(4):553-563. https://doi.org/10.1086/386554

(21) Kwan WH, Wong YS (2020) Materials Science for Energy Technologies 3:501-507. https://doi.org/10.1016/j.mset.2020.05.001

(22) López-Alonso M, Martín-Morales M, Martínez-Echevarría MJ, Agrela F, Zamorano M (2021) Waste and Byproducts in Cement-Based Materials 89-137. https://doi.org/10.1016/B978-0-12-820549-5.00011-5

(23) Sun R, Lawther JM, Banks WB (1995) Ind. Crops Prod. 4:127-145. https://doi.org/10.1016/0926-6690(95)00025-8

(24) Reddy N, Yang Y (2007) J. Agric. Food Chem. 55:8570-8575. https://doi.org/10.1021/jf071470g

(25) Rodriguez-Gomez D, Lehmann L, Schultz-Jensen N, Bjerre AB, Hobley TJ (2012) Applied biochemistry and biotechnology 166(8):2051-2063. https://doi.org/10.1007/s12010-012-9631-x

(26) Prasad S, Singh A, Joshi HC (2007) Resources, Conservation and Recycling 50(1):1-39. https://doi.org/10.1016/j.resconrec.2006.05.007

(27) McKendry P (2002) Bioresource technology 83(1):37-46. https://doi.org/10.1016/S0960-8524(01)00118-3

(28) Yeleuov M, Seidl C, Temirgaliyeva T, Taurbekov A, Prikhodko N, Lesbayev B, Sultanov F, Daulbayev C, Kumekov S (2020) Energies 13:4943. https://doi.org/10.3390/en13184943

(29) Ma’Ruf A, Pramudono B, Aryanti N (2017) AIP Conf. Proc. 1:1823. https://doi.org/10.1063/1.4978086

(30) Sarangi M, Nayak P, Tiwari TN (2011) Composites Part B Engineering 42(7):1994-1998. https://doi.org/10.1016/j.compositesb.2011.05.026

(31) Santana Costa JA, Paranhos CM (2018) Journal of Cleaner Production 192:688-697. https://doi.org/10.1016/j.jclepro.2018.05.028

(32) Mansaray KG, Ghaly AE (1998) Journal Energy Sources 20(7):653-663. https://doi.org/10.1080/00908319808970084

(33) Glushankova I, Ketov A, Krasnovskikh M, Rudakova L, Vaisman I (2018) Resources 7(31):2-11. https://doi.org/10.3390/resources7020031

(34) Umeda J, Kondoh K (2008) Transactions of JWRI 37(1):13-17. https://doi.org/10.1016/j.cirp.2008.03.115

(35) Azat S, Sartova Z, Bekseitova K, Askaruly K (2019) Turk J Chem 43:1258-1269. https://doi.org/10.3906/kim-1903-53

Published

— Updated on 2022-12-11

How to Cite

Prikhodko, N., Yeleuov, M., Askaruly, K., Tolynbekov, A., Taurbekov, A., Abdisattar, A., & Atamanov, M. (2022). Investigation of initial plant biomass for volume production of graphene-like structures. Combustion and Plasma Chemistry, 20(4), 303–313. https://doi.org/10.18321/cpc20(4)303-313

Most read articles by the same author(s)

1 2 > >>