Study of the adsorption characteristics of commercial activated carbons in the process of capacitive deionization of aqueous solutions

Authors

  • Zh.А. Supiyeva Institute of Combustion Problems, Bogenbai Batyr str. 172, Almaty, Kazakhstan; al-Farabi Kazakh National University, ave. al-Farabi 71, Almaty, Kazakhstan
  • V.V. Pavlenko Institute of Combustion Problems, Bogenbai Batyr str. 172, Almaty, Kazakhstan; al-Farabi Kazakh National University, ave. al-Farabi 71, Almaty, Kazakhstan
  • М.А. Biisenbayev al-Farabi Kazakh National University, ave. al-Farabi 71, Almaty, Kazakhstan
  • F. Beguin Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 04, 60- 965 Poznan, Poland

DOI:

https://doi.org/10.18321/cpc338

Keywords:

activated carbon, capacitive deionization of water, double electric layer.

Abstract

The paper presents the results of using various commercial grades of nanoporous carbon materials with a specific surface area of up to 2060 m2/g in the process of capacitive deionization of aqueous solutions of sodium chloride. It was found that the greatest efficiency in the removal of dissolved ions is achieved using solutions with a low salt concentration, i.e. 5 mmol/l. The use of a dynamic method for studying the adsorption capacity of nanoporous carbon materials has allowed us to establish that composite materials based on Kuraray YP 80F (Calgon Carbon, USA) have the most optimal characteristics, for which this value was about 6 mg/g. It was also shown that, depending on the duration of adsorption and the concentration of solutions, the pH of the eluates varied in the range from 6.5 to 4.5.

References

(1). Anderson М.А., Cudero A.L., Palma J. Electrochimica Acta – 2010. – V.55. – P.3845-3856. https://doi.org/10.1016/j.electacta.2010.02.012

(2). Oren Y. Capacitive deionization (ЕДВ) for desalination and water treatment-past, present and future // Desalination – 2008. – V.228. – P.10-29. https://doi.org/10.1016/j.desal.2007.08.005

(3). Zou L., Morris G., Qi D. Using activated carbon electrode in electrosorptive deionisation of brackish water // Desalination – 2008. – V.225. P.329-40. https://doi.org/10.1016/j.desal.2007.07.014

(4). Тарасевич М.Р. Электрохимия углеродных материалов. Москва: «Наука», 1984. 252.

(5). Pavlenko V.V., Supiyeva Zh.A. et al. Combinedcycle activation of carbonized plant fiber to produce electrode materials for supercapacitors // Combustion and plasma chemistry – 2017. – V.15. – P.74-79.

(6). Farmer JC, Bahowick SM, Harrar JE, Fix DV, Martinelli RE, Vu AK, et al. Electrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water // Energy Fuels – 1997. – V.11. – P.337-47. https://doi.org/10.1021/ef9601374

(7). Gabelich CJ, Tran TD, Suffet IH. Electrosorption of inorganic salts from aqueous solution using carbon aerogels // Environ. Sci. Technol. – 2002. – V.36. – P.3010-9. https://doi.org/10.1021/es0112745

(8). Seo SJ, Jeon H, Lee JK, Kim GY, Park D, Nojima H, et al. Investigation on removal of hardness ions by capacitive deionization (ЕДВ) for water softening applications // Water Res. – 2010. – V.44. – P.2267-75. https://doi.org/10.1016/j.watres.2009.10.020

(9). Ying TY, Yang KL, Yiacoumi S, Tsouris C. Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel // J Colloid Interface Sci. – 2002. – V.250. – P.18-27. https://doi.org/10.1006/jcis.2002.8314

(10). Zou LD, Li LX, Song HH, Morris G. Using mesoporous carbon electrodes for brackish water desalination // Water Res. – 2008. – V.42. – P.2340-8. https://doi.org/10.1016/j.watres.2007.12.022

(11). Humplik T, Lee J, O’Hern SC, Fellman BA, Baig MA, Hassan SF, et al. Nanostructured materials for water desalination // Nanotechnology – 2011. – V.22. – P.29200-1. https://doi.org/10.1088/0957-4484/22/29/292001

(12). Peng Z, Zhang D, Shi L, Yan T, Yuan S, Li H, et al. Comparative electroadsorption study of mesoporous carbon electrodes with various pore structures // J. Phys. Chem. C. – 2011. – V.115. – P.17068-76. https://doi.org/10.1021/jp2047618

(13). Li H, Pan L, Lu T, Zhan Y, Nie C, Sun Z. A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization // J. Electroanal. Chem. – 2011. – V.653. – P.40-4. https://doi.org/10.1016/j.jelechem.2011.01.012

(14). C. Kim, J. Lee, S. Kim, J. Yoon, TiO2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization // Desalination. – 2014. – V.342. – P.70-74. https://doi.org/10.1016/j.desal.2013.07.016

(15). J.H. Lee, J.H. Choi, Ion-selective composite carbon electrode coated with TiO2 nanoparticles for the application of electrosorption process // Desalin. Water Treat.– 2013. – V.51. – P.503-510. https://doi.org/10.1080/19443994.2012.714581

(16). M.W. Ryoo, J.H. Kim, G. Seo, Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution // J. Colloid Interface Sci. – 2003. – V.264. – P.414-419. https://doi.org/10.1016/S0021-9797(03)00375-8

(17). https://www.calgoncarbon.com/app/uploads/ YP-brochure-draft_final_08_2019.pdf

(18). G. Wang, C. Pan, L. Wang, Q. Dong, C. Yu, Z. Zhao, J. Qiu, Activated carbon nanofiber webs made by electrospinning for capacitive deionization // Electrochim. Acta. – 2012. – V.69. – P.65-70. https://doi.org/10.1016/j.electacta.2012.02.066

(19). K.K. Park, J.B. Lee, P.Y. Park, S.-W. Yoon, J.S. Moon, H.M. Eum, C.-W. Lee, Development of a carbon sheet electrode for electrosorption desalination // Desalination. – 2007. – V.206. – P.86-91. https://doi.org/10.1016/j.desal.2006.04.051

(20). Zou L., Mossad M. Evaluation of the salt removal efficiency of capacitive deionization: Kinetics, isotherms and thermodynamics // Chemical Engineering Journal – 2013. – V.223. – P.704-713. https://doi.org/10.1016/j.cej.2013.03.058

Published

2023-07-22

How to Cite

Supiyeva, Z., Pavlenko, V., Biisenbayev М., & Beguin, F. (2023). Study of the adsorption characteristics of commercial activated carbons in the process of capacitive deionization of aqueous solutions. Combustion and Plasma Chemistry, 17(4), 214–220. https://doi.org/10.18321/cpc338