Modeling the movement of nutrients in the porous structure of a biocarcass based on calcium hydroxyapatite

Authors

  • Ch. Daulbaev Institute of Combustion Problems, Bogenbai batyr str., 172, Almaty, Kazakhstan; Al-Farabi kazakh national university, ave. Al-Farabi 71, Almaty, Kazakhstan
  • S.Y. Serovaysky Al-Farabi Kazakh National University, Al-Farabi ave. 71, Almaty, Kazakhstan
  • Z.A. Mansurov Institute of Combustion Problems, Bogenbai batyr str., 172, Almaty, Kazakhstan; Al-Farabi kazakh national university, ave. Al-Farabi 71, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc331

Keywords:

Calcium hydroxyapatite, Darcy’s law, porous structures.

Abstract

The article is devoted to the study of the movement of nutrients in the porous structure of a biological framework based on calcium hydroxyapatite. The basis for the mathematical model was Darcy’s law. As the scaffolds under study, we selected three-dimensional porous structures obtained by 3D printing, which consisted of a biologically soluble polymer and calcium hydroxyapatite. Mathematical calculations were carried out and optimal parameters were determined such as: frame rotation speed, porosity and pore size of calcium hydroxyapatite.

References

(1). Darcy Henry Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’ea Les fontaines // publiques de la ville de Dijon. – 1856. – Vol. 18. – P. 647.

(2). Combarnous, M. A., Bories S. A. Hydrothermal convection in saturated porous media // Adv. ydrosci. – 1975. –Vol. 10. – P. 231-307. https://doi.org/10.1016/B978-0-12-021810-3.50008-4

(3). Nakayama, A., Pop, I. A unified similarity transformation for free, forced and mixed convection in Darcy and non-Darcy porous media // Int. J. Heat Mass Tranifer. – 1991. – Vol. 34. – P. 357-367. https://doi.org/10.1016/0017-9310(91)90256-E

(4). Nakayama A., Kokudai T., Koyama H. An integral treatment for non-Darcy free convection over a vertical flat plate and cone embedded in a fluid-saturated porous medium // Wiirme-und Stoffubertragung. – 1988. – Vol. 23. – P. 337-341. https://doi.org/10.1007/BF01650469

(5). Dharmadhikari R. V., Kale D. D. Flow of non- Newtonian fluids through porous media // Chem. Engg. Sci. – 1985. – Vol. 40. – P. 527-529. https://doi.org/10.1016/0009-2509(85)85113-7

(6). Daulbayev, C., Mitchell, G., Zakhidov, A., Sultanov, F., Mansurov, Z. Obtaining of biologically soluble membranes based on polymeric nanofibres and hydroxyapatite of calcium // Eurasian Chemico-Technological Journal, 2018, 20(2), P. 119-124. https://doi.org/10.18321/ectj690

(7). Torrent-Burgues J. Continuous Precipitation of Hydroxyapatite from Ca/Citrate/Phosphate Solutions using Microwave Heating // Cryst. Res. Technol. – 1999. – Vol.34 – P. 757–762. https://doi.org/10.1002/(SICI)1521-4079(199906)34:5/6<757::AID-CRAT757>3.0.CO;2-L

(8). M. Sadat-Shojai Preparation of Hydroxyapatite Nanoparticles: Comparison between Hydrothermal and Solvo-Treatment Processes and Colloidal Stability of Produced Nanoparticles in a Dilute Experimental Dental Adhesive // J. Iran. Chem. Soc. – 2009. – Vol.6. – P. 386-392. https://doi.org/10.1007/BF03245848

(9). Earl J. S. Hydrothermal synthesis of hydroxyapatite // Journal of Physics: Conference Series. – 2006. – Vol. 26. – P. 268–271. https://doi.org/10.1088/1742-6596/26/1/064

(10). Cox S.C., Thornby J.A., Gibbons G.J., Williams M.A., Mallick K.K. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications // Mater. Sci. Eng. C. – N2015. – Vol. 47. – P. 237–247. https://doi.org/10.1016/j.msec.2014.11.024

(11). Do A.V., Khorsand B., Geary S.M., Salem A.K. 3D printing of scaffolds for tissue regeneration applications // Adv. Healthcare Mater. – 2015. – Vol. 4. – P. 1742–1762. https://doi.org/10.1002/adhm.201500168

(12). Doraiswamy A., Narayan R.J., Harris M.L., Qadri S.B., Modi R., Chrisey D.B. Laser microfabrication of hydroxyapatite-osteoblast-like cell composites // J. Biomed. Mater. Res. – 2007. – Vol. 80. – P. 635–643. https://doi.org/10.1002/jbm.a.30969

(13). Duan B., Wang M., Zhou W.Y., Cheung W.L., Li Z.Y., Lu W.W. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering // Acta Biomater. – 2010. – Vol. 6. – P. 4495–4505. https://doi.org/10.1016/j.actbio.2010.06.024

(14). Duque G., Rivas D. Alendronate has an anabolic effect on bone through the differentiation of mesenchymal stem cells // J. Bone Miner. Res. – 2007. – Vol. 22. – P. 1603–1611. https://doi.org/10.1359/jbmr.070701

(15). Ehrler D.M., Vaccaro A.R. The use of allograft bone in lumbar spine surgery // Clin. Orthop. Relat. Res. – 2000. – Vol. 371. – P. 38–45. https://doi.org/10.1097/00003086-200002000-00005

(16). Eosoly S., Brabazon D., Lohfeld S., Looney L.. Selective laser sintering of hydroxyapatite/polyepsilon- caprolactone scaffolds // Acta Biomater. – 2010. – Vol. 6. – P. 2511–2517. https://doi.org/10.1016/j.actbio.2009.07.018

(17). Kim I., Elghobashi S., Sirignano W. A. On the equation for spherical-particle motion:effect of Reynolds and acceleration numbers // J. Fluid Mech. – 1998. – Vol. 367. – P. 221–253. https://doi.org/10.1017/S0022112098001657

(18). Zia S., Mozafari M., Natasha G., Tan A., Cui Z., Seifalian A.M. Hearts beating through decellularized scaffolds: whole-organ engineering for cardiac regeneration and transplantation // Crit. Rev. Biotechnol. – 2016. – Vol. 36. – P. 705- 715. https://doi.org/10.3109/07388551.2015.1007495

(19). Joseph J. Pearson, Nicholas Gerken, Chunsik Bae, Kyu-Bok Lee Arpan Satsangi. In vivo hydroxyapatite scaffold performance in infected bone defects // Journal of Biomedical Materials Research Part B Applied Biomaterials. – 2019. – Vol. 10. – P. 1-10.

Published

2019-12-30

How to Cite

Daulbaev, C., Serovaysky, S., & Mansurov, Z. (2019). Modeling the movement of nutrients in the porous structure of a biocarcass based on calcium hydroxyapatite. Combustion and Plasma Chemistry, 17(4), 203–208. https://doi.org/10.18321/cpc331

Most read articles by the same author(s)

<< < 1 2 3 4 > >>