Development of porous structures based on semiconductor oxides

Authors

  • M.A. Bisenova Satbayev University, Almaty, Kazakhstan
  • R.E. Beissenov Satbayev University, Almaty, Kazakhstan; «Physics and Technology Institute», Almaty, Kazakhstan
  • A.L. Mereke Satbayev University, Almaty, Kazakhstan; «Physics and Technology Institute», Almaty, Kazakhstan
  • E.E. Beissenova Satbayev University, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc409

Keywords:

Water splitting, hydrogen generation, porous materials, photoanode, TiО2, CoTiО3

Abstract

The article presents the results of changing  the pore size depending on the amount of poreforming agent and measuring the specific surface area depending on the sintering temperature. A three-dimensional porous photoanode was produced from a mixture of nanosized Co3O4 and TiO2 powders with various amounts of poreforming agent for further mixing in an aqueous solution. Scanning electron microscope studies of the morphology of a three-dimensional thinfilm porous photoanode showed the formation of a porous structure with submicron pore sizes depending on the added pore-forming agent. The largest surface area of a three-dimensional structure will be achieved using the developed technology using a mixture of materials that play the role of pore-forming in the anode material, which makes it possible to increase the efficiency of light absorption by creating a mixed or multilayer structure of several photocatalytic materials.

References

(1). Gunjakar L, Kim T, Kim N, Kim Y, Hwang S (2011) J. Am. Chem. Soc. 133:14998–15007. https://doi.org/10.1021/ja203388r

(2). Fujishima A, Honda K (1972) Nature 238:37–38. https://doi.org/10.1038/238037a0

(3). Maeda K, Domen K (2010) J. Phys. Chem. Lett. 1:2655–2661. https://doi.org/10.1021/jz1007966

(4). Wang H., Jeong H.Y., Imura M., Wang L., Radhakrishnan L., Fujita N., Castle T., Terasaki O., Yamauchi Y (2011) J. Am. Chem. Soc. 133:14526–14529. https://doi.org/10.1021/ja2058617

(5). Fujishima A, Rao TN, Tryk DA (2000), J. Photoch. Photobio. C. 1:1–21. https://doi.org/10.1016/S1389-5567(00)00002-2

(6). Stolarczyk JK, Bhattacharyya S, Polavarapu L, Feldmann J (2018) ACS Catal., 8:3602–3635. https://doi.org/10.1021/acscatal.8b00791

(7). Miró P, Audiffred M, Heine T (2014) Chem. Soc. Rev. 43:6537–6554. https://doi.org/10.1039/C4CS00102H

(8). Jing Y, Heine T (2017) J. Mater. Chem. A. 17:1833–1838. https://doi.org/10.1021/acs.nanolett.6b05143

(9). Liu J, Qiao M, Zhu X, Jing Y, Li Y (2019) RSC Adv. 9:15536–1554. https://doi.org/10.1039/ C9RA01686D

(10). Jing Y, Ma Y, Wang Y, Li Y, Heine T (2017) Chem. Eur. J. 23:13612–13616.https://doi.org/10.1002/chem.201703683

(11). Qiao M, Liu J, Wang Y, Li Y, Chen J, (2018) Chem. Soc. 140:12256–12262. https://doi.org/10.1021/jacs.8b07855

(12). Zhang X, Zhao X, Wu D, Jing Y, Zhou Z (2016) Adv. Sci. 3:1600062. https://doi.org/10.1002/advs.201600062

(13). Zhang X, Zhang Z, Wu D, Zhang X, Zhao X, Zhou Z (2018) Small Methods 2:1700359. https://doi.org/10.1002/smtd.201700359

(14). Andoshe DM, Jeon JM, Kim SY, Jang HW (2015) Electron. Mater. Lett. 3:323–335. https://doi.org/10.1007/s13391-015-4402-9

(15). Sa B, Li Y, Qi J, Ahuja R, Sun Z (2014) J. Phys. Chem. C. 118:26560–26568. https://doi.org/10.1021/jp508618t

(16). Gilmore K, Mohamed RK, Alabugin IV (2016) Wiley Interdisciplinary Reviews: Computational Molecular Science. 6:487–514. https://doi.org/10.1002/wcms.1261

(17). Maitra U, Gupta U, De M, Datta R, Govindaraj A, Rao CNR (2013) Angew. Chem. Int. Ed. 52:13057–13061. https://doi.org/10.1002/anie.201306918

(18). Rahman MZ, Kwong CW, Davey K, Qiao SZ (2016) Energ. Environ. Sci. 9:709–728. https://doi.org/10.1039/C5EE03732H

(19). Wang G, Slough WJ, Pandey R, Karna SP (2016) 2D Mater. 3:025011. https://doi.org/10.1088/2053-1583/3/2/025011

(20). Dai J, Zeng XC (2014) RSC Adv. 4:48017–48021. https://doi.org/10.1039/C4RA02850C

(21). Jing Y, Zhou Z, Zhang J, Huang C, Li Y, Wang F (2019) Phys. Chem. Chem. Phys., 21:21064–21069. https://doi.org/10.1039/C9CP04143E

(22). Ran J, Zhu B, Qiao S-Z (2017) Angew. Chem. Int. Ed. 56:10373–10377. https://doi.org/10.1002/anie.201703827

(23). Yang H, Ma Y, Zhang S, Jin H, Huang B, Dai Y (2019) J. Mater. Chem. A, 7:12060–12067. https://doi.org/10.1039/C9TA02716E

(24). Yang H, Li J, Yu L, Huang B, Ma Y, Dai Y (2018) J. Mater. Chem. A, 6:4161–4166. https://doi.org/10.1039/C7TA10624F

(25). Cai Y, Zhang G, Zhang Y-W (2014) J. Am. Chem. Soc., 136:6269–6275. https://doi.org/10.1021/ja4109787

(26). Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013), Science, 340:1226419. https://doi.org/10.1126/science.1226419

(27). Chhowalla M, Liu Z, Zhang H (2015) Chem. Soc. Rev., 44:2584–2586. https://doi.org/10.1039/C5CS90037A

(28). Shafique A, Samad A, Shin YH (2017) Phys. Chem. Chem. Phys., 19:20677–20683. https://doi.org/10.1039/C7CP03748A

(29). Jiao Y, Zhou L, Ma F, Gao G, Kou L, Bell J, Sanvito S, Du A (2016) ACS Appl. Mater. Interfaces, 8:5385–5392. https://doi.org/10.1021/acsami.5b12606

(30). Tang С, Zhang С, Matta SK, Jiao Y, Ostrikov K, Liao T, Kou L, Du A (2018) J. Phys. Chem. C, 122:21927–21932. https://doi.org/10.1021/acs.jpcc.8b06622

(31). Zhang G, Lan ZA, Lin L, Lin S, Wang X (2016), Chem. Sci. 7:3062–3066. https://doi.org/10.1039/C5SC04572J

(32). Shirayama M, Kadowaki H, Miyadera T, Sugita T, Tamakoshi M, Kato M, Fujiseki T, Murata D, Hara S, Murakami TN, Fujimoto S, Chikamatsu M, Fujiwara H (2016) Phys. Rev. Appl., 5:014012. https://doi.org/10.1103/PhysRevApplied.5.014012

Published

2019-02-16

How to Cite

Bisenova, M., Beissenov, R., Mereke, A., & Beissenova, E. (2019). Development of porous structures based on semiconductor oxides. Combustion and Plasma Chemistry, 19(1), 43–51. https://doi.org/10.18321/cpc409

Most read articles by the same author(s)