Conversion of bioethanol over oxide catalysts

Authors

  • G.Y. Yergaziyeva Institute of Combustion Problems, Almaty, Kazakhstan
  • S. Tayrabekova Academy of Civil Aviation, Almaty, Kazakhstan
  • M. Mambetova Kazakh National Women’s Teacher Training University, Almaty, Kazakhstan
  • S. Ozganbayeva Kazakh National Women’s Teacher Training University, Almaty, Kazakhstan
  • S. Smagulova Kazakh National Women’s Teacher Training University, Almaty, Kazakhstan; Almaty College of Management and Market, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc281

Keywords:

bioethanol, catalyst, modification

Abstract

The conversion of bioethanol over supported oxide catalysts (CuO, ZnO, Cr2O3, CeO2) was studied, among which the most active in the production of hydrogen is 3% CuO/γ-Al2O3. Modification of 3% CuO/γ-Al2O3 catalyst with Cr2O3, ZnO and CeO2 promotes the growth of hydrogen yield. The highest concentration of hydrogen at 300° C and a space velocity of 1 h-1 on CuO-ZnO / γ-Al2O3 was 48% by volume. The acidity of catalysts for adsorption-desorption of pyridine by infrared spectroscopy (ITI Matson FTIR) was determined. When the content of CuO in the catalyst is increased from 1 to 3%, the amount of Lewis acidic centers (LAS) increases from 58 to 82 μmol/gcat. Modification with chromium oxide of the copper catalyst increases the number of LAS from 82 to 156 μmol/gcat by adsorption of pyridine at 150° C and from 79 to 120 μmol/gcat with pyridine adsorption at 250 °C. It has been established that an increase in the number of Lewis acid sites has a positive effect on the yield of hydrogen in the conversion of bioethanol. According to electron microscopy, the modification of catalysts leads to an increase in the dispersity of the catalyst and to a uniform distribution of particles on the surface of the catalyst, which also contributes to its greater activity in the production of hydrogen.

References

(1). E. Santacesaria, G.Carotenuto, R.Tesser, M.Di Serio. Ethanol dehydrogenation to ethyl acetate by using copper and copper chromite catalysts // Chemical Engineering Journal – 2012 -Vol.179. - P. 209-220. https://doi.org/10.1016/j.cej.2011.10.043

(2). Scott D. Barnicki. Synthetic Organic Chemicals. Handbook of Industrial Chemistry and Biotechnology – 2017 – Р. 423-530. https://doi.org/10.1007/978-3-319-52287-6_7

(3). Kh. M. Minachev, N. Ya. Usachev, Ya. I. Isakov, A. P. Rodin, V. P. Kalinin. The effect of acidity on the catalytic action of PdCu zeolites in the oxidation of ethylene to acetaldehyde// Bulletin of the Academy of Sciences of the USSR, Division of chemical science - 1981- Vol. 30, I. 4 – Р. 514–520. https://doi.org/10.1007/BF00949701

(4). A.G. Sato, D.P. Volanti, I.C. De Freitas, E. Longo, J.M.C. Bueno. Site-selective ethanol conversion over supported copper catalysts // Catalysis Communications – 2012 - Vol. 26 – P. 122-126. https://doi.org/10.1016/j.catcom.2012.05.008

(5). Alexandru Popa, Viorel Sasca. Catalytic conversion of ethanol over nickel salts of Keggin type heteropolyacids supported on mesoporous silica // Reaction Kinetics, Mechanisms and Catalysis – 2017 – Vol. 121, I. 2. – Р. 657–672. https://doi.org/10.1007/s11144-017-1189-8

(6). J. M. Hidalgo, Z. Tišler, R. Bulánek, P. Čičmanec, K. Raabová, D. Kubička. Partial oxidation of ethanol over ZrO2-supported vanadium catalysts // Reaction Kinetics, Mechanisms and Catalysis – 2017 – Vol. 121, I.1 - Р. 161– 173. https://doi.org/10.1007/s11144-017-1159-1

(7). Yergaziyeva G.Y., Dossumov K., Churina D.Kh., Tayrabekova S., Kalihanov K. Conversion bioethanol over zeolites // Chemical journal of Kazakhstan. – 2015. – №3.– P.252-258.

(8). G. Carotenuto, R. Tesser, M. Di Serio, E. Santacesaria. Bioethanol as feedstock for chemicals such as acetaldehyde, ethyl acetate and pure hydrogen // Biomass Conversion and Biorefinery. – 2013 - Vol. 3, I.1 – Р. 55–67. https://doi.org/10.1007/s13399-012-0045-3

(9). Ji Hwan Song, Seung Ju Han, In Kyu Song. Hydrogen Production by Steam Reforming of Ethanol Over Mesoporous Ni–Al2O3–ZrO2 Catalysts // Catalysis Surveys from Asia – 2017 – Vol. 21, I.3 – Р. 114–129. https://doi.org/10.1007/s10563-017-9230-5

(10). Wei Xia, Xichuan Mu, Fangfang Wang, Kun Chen, Huimin Si, Zhihao Li. Ethylene and propylene production from ethanol over Sr or Bi modified ZrO2 catalysts // Reaction Kinetics, Mechanisms and Catalysis – 2017 – Vol. 122, I 1. – Р. 473–484. https://doi.org/10.1007/s11144-017-1236-5

(11). S. Tayrabekova, P. Mäki-Arvela, M. Peurla, P. Paturi, K. Eränen, G.E. Ergazieva, A. Aho, D.Yu. Murzin, K. Dossumov. Catalytic dehydrogenation of ethanol into acetaldehyde and isobutanol using mono- and multicomponent copper catalyst // Comptes Rendus Chimie – 2017 – P. 1-16. https://doi.org/10.1016/j.crci.2017.05.005

(12). J. Mielby, J.O. Abildstrom, F.Wang, T. Kasama, C. Weidenthaler, S. Kegnaes. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles // Angewandte Chemie -2014 – Vol. 126. –P. 12721- 12724. https://doi.org/10.1002/ange.201406354

(13). P. Čičmanec, K. Raabová, J. M. Hidalgo, David Kubička, R. Bulánek. Conversion of ethanol to acetaldehyde over VOX-SiO2 catalysts: the effects of support texture and vanadium speciation // Reaction Kinetics, Mechanisms and Catalysis - 2017 – Vol. 121, I.1 – Р. 353–369. https://doi.org/10.1007/s11144-017-1169-z

(14). B. Babu, Ch. V. Reddy, J. Shim, R. V. Ravikumar, J. Park. Effect of cobalt concentration on morphology of Codoped SnO2 nanostructures synthesized by solution combustion method // J. Mater. Sci: Mater. Electron. - 2016- Vol. 27 - P. 5197–5203. https://doi.org/10.1007/s10854-016-4413-9

Published

2019-01-24

How to Cite

Yergaziyeva, G., Tayrabekova, S., Mambetova, M., Ozganbayeva, S., & Smagulova, S. (2019). Conversion of bioethanol over oxide catalysts. Combustion and Plasma Chemistry, 17(1), 40–46. https://doi.org/10.18321/cpc281

Most read articles by the same author(s)