Plasma ignition of dust-coal flame

Authors

  • V.E. Messerle Institute of Combustion Problems, Almaty, Kazakhstan; Institute of Thermophysics of SB RAS, Novosibirsk, Russia
  • A.B. Ustimenko Plasmatechnics R&D LLP, Institute of Experimental and Theoretical Physics, al-Farabi Kazakh National University, Almaty, Kazakhstan
  • К.А. Umbetkaliev Institute of Combustion Problems, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc285

Keywords:

coal, fuel mixture, plasma, ignition, numerical experiment.

Abstract

One of the promising power engineering technologies is the plasma thermochemical preparation of pulverized coal for burning using plasma-fuel systems (PFS). This technology allows for increasing the efficiency of fuel use and environmental indicators of thermal power plants, as well as eliminating the use of fuel oil, traditionally used to start up the boilers and stabilize the combustion of a pulverized coal flame. This paper presents the results of numerical experiments on the ignition of pulverized coal in PFS. PFS is designed for fuel oil-free start-up of the boilers and stabilization of pulverized coal flame and represents a pulverized coal burner equipped with a plasma torch. Via PlasmaKinTherm software which combines kinetic and thermodynamic methods of calculating the processes of motion, heating, thermochemical transformations, and fuel mixture ignition in the volume of PFS, the impact of the power of the plasma torch and ash content of coal on the efficiency of fuel mixture ignition have been determined. Also one of the main regime parameters of PFS providing ignition of the fuel is the concentration of coal dust in the fuel mixture which can vary within a wide range. Therefore, conditions for fuel mixture ignition in PFS have been investigated, depending on the concentration of coal in the fuel mixture in the range from 0.4 to 1.8 kg of coal per 1 kg of air. Calculations were performed for cylindrical PFS of 0.2 m diameter and 2 m of length at fixed consumption of coal (1000 kg/h) and the plasma torch power (60 kW) for three values of coal ash content (20, 40 and 70%). The basic regularities of the process of plasma thermochemical preparation of fuel for burning were revealed.

References

(1). BP Energy Outlook 2035. February 2015. BP p.l.c., 98 p., 2015. http://www.bp.com/content/dam/bp/pdf/energy-economics/energy-outlook-2015/bp-energyoutlook-2035-booklet.pdf

(2). Key World Energy Statistics 2012: International Energy Agency. OECD/IEA, 80 p., 2012. www.iea.org

(3). I.B. Matveev, N.V. Washcilenko, S.I. Serbin, N.A. Goncharova “Integrated Plasma Coal Gasification Power Plant” IEEE Trans. Plasma Sci., 2013, vol. 41, no. 12, pp. 3195-3200. https://doi.org/10.1109/TPS.2013.2289908

(4). A.V. Surov, S.D. Popov, V.E. Popov, D.I. Subbotin, E.O. Serba, V.A. Spodobin, G.V. Nakonechny, A.V. Pavlov “Multi-gas AC plasma torches for gasification of organic substances” Fuel, 2017, vol. 203, pp. 1007-1014. https://doi.org/10.1016/j.fuel.2017.02.104

(5). A.F. Bublievsky, J.C. Sagás, A.V. Gorbunov, H.S. Maciel, D.A. Bublievsky, G.P. Filho, P.T. Lacava, A.A. Halinouski, G.E. Testoni “Similarity Relations of Power–Voltage Characteristics for Tornado Gliding Arc in Plasma- Assisted Combustion Processes” IEEE Trans. Plasma Sci., 2015, vol. 43, no. 5, pp. 1742–1746. https://doi.org/10.1109/TPS.2015.2419822

(6). V.E. Messerle, E.I. Karpenko, A.B. Ustimenko “Plasma Assisted Power Coal Combustion in the Furnace of Utility Boiler: Numerical Modelling and Full-Scale Test” Fuel, 2014, vol.126. pp. 294-300. https://doi.org/10.1016/j.fuel.2014.02.047

(7). V.E. Messerle, A.B. Ustimenko, Yu.E. Karpenko, M.Yu. Chernetskii, A.A. Dekterev, S.A. Filimonov “Modeling and Full-Scale Tests of Vortex Plasma–Fuel Systems for Igniting High-Ash Power Plant Coal” Thermal Engineering, 2015, vol. 62, no. 6, pp. 442–451. https://doi.org/10.1134/S0040601515060063

(8). V.E. Messerle, E.I. Karpenko, A.B. Ustimenko, O.A. Lavrichshev “Plasma preparation of coal to combustion in power boilers” Fuel Process. Technol. vol. 107, pp. 93-98, 2013. https://doi.org/10.1016/j.fuproc.2012.07.001

(9). M.G. Drouet “La technologie des plasmas. Potentiel d’application au Canada” Revue generale d’electricite, no.1, pp. 51-56, 1986.

(10). P.R. Blackburn “Ignition of рulverized coal with Arc Heated Air” Energy, vol.4, no.3, pp. 98-99, 1980. https://doi.org/10.2514/3.62464

(11). C.B. Alcock “Thermochemical Processes: Principles and Models” Butterworth-Heinemann, 2000. 384 p.

(12). R.C. Brown “Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power” John Wiley & Sons, 348 p., 2011. https://doi.org/10.1002/9781119990840

(13). M.F. Zhukov and I.M. Zasypkin “Thermal Plasma Torches- Design, Characteristics, Applications” Cambridge, U.K.: Cambridge Int. Sci. Publ., 610 p., 2007.

(14). Igor B. Matveev (ed.) Plasma assisted combustion, gasification, and pollution control. Volume I. Methods of plasma generation for PAC, Denver, Colorado: Outskirts Press Inc. 538 p., 2013.

(15). R.A. Kalinenko, A.A. Levitski, V.E. Messerle, L.S. Polak, Z.B. Sakipov, A.B. Ustimenko, Pulverized Coal Plasma Gasification, Plasma Chem. Plasma Process., 1993, vol.13, no. 1, pp. 141-167. https://doi.org/10.1007/BF01447176

(16). M. Gorokhovski, E.I. Karpenko, F.C. Lockwood, V.E. Messerle, B.G. Trusov, A.B. Ustimenko, Plasma Technologies for Solid Fuels: Experiment and Theory, J. Energy Inst., 2005, vol.78, no. 4, pp. 157-171. https://doi.org/10.1179/174602205X68261

(17). A.V. Messerle, V.E. Messerle, A.B. Ustimenko, Plasma Thermochemical Preparation for Combustion of Pulverized Coal, High Temperature, 2017, vol.55, no.3, pp. 352–360. https://doi.org/10.1134/S0018151X17030142

(18). A.V. Messerle “Mathematical Simulation of Plasma-Chemical Coal Conversion” High Energy Chemistry, 2004, vol. 38, no.1. pp. 35-40. https://doi.org/10.1023/B:HIEC.0000012062.91868.e5

(19). V.E. Messerle, A.B. Ustimenko. “Plasma ignition and combustion of solid fuel (научно-технические основы)” Saarbrucken, Germany: Palmarium Acad. Publ., 404 p., 2012. (in Russian)

(20). M.A. Gorokhovski, Z. Jankoski, F.C. Lockwood, E.I. Karpenko, V.E. Messerle, A.B. Ustimenko, Enhancement of Pulverized Coal Combustion by Plasma Technology, Combustion Science and Technology, 2007, vol.179, no.10, pp. 2065–2090. https://doi.org/10.1080/00102200701386115

(21). Fuels and Chemicals - Auto Ignition Temperatures, EngineeringToolBox. http://www.engineeringtoolbox.com/fuels-ignition-temperatures-d_171.html

(22). A.A. Arinov “Condition and quality indicators of Ekibastuz coal” Vestnik KarGU. 2007. http://articlekz.com/article/5924 (in Russian)

Downloads

Published

2019-01-24

How to Cite

Messerle, V., Ustimenko, A., & Umbetkaliev К. (2019). Plasma ignition of dust-coal flame. Combustion and Plasma Chemistry, 17(1), 14–22. https://doi.org/10.18321/cpc285

Most read articles by the same author(s)

1 2 > >>