MODIFIED COBALT CATALYSTS FOR HYDROGENATION OF HYDROCARBONS

Authors

  • A.N. Aitugan Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • S.K. Tanirbergenova Institute of Combustion Problems, 172 Bogenbay batyr st., Almaty, Kazakhstan
  • Ye. Tileuberdi Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr st., Almaty, Kazakhstan
  • D. Tugelbayeva Institute of Combustion Problems, 172 Bogenbay batyr st., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc364

Keywords:

hydrogenation, acetylene, ethylene, catalysts, cobalt.

Abstract

This work is devoted to the study of the influence of aluminum oxide content on the activity of cobalt catalysts in the reaction of selective hydrogenation of acetylene to ethylene. Cobalt catalysts modified with aluminum oxide having size between 50 to 500 nm were synthesized. Chemical contents and structure of carrier were investigated. The catalytic activity of 5% Со/clay and 5% Co/SiAl catalysts at acetylene hydrogenation was studied in the temperature range 100-180 ℃, with a ratio of 1:2 of acetylene and hydrogen. The ethylene yield is 87.8% in modifying the cobalt catalyst with aluminum oxide, whereas with the same process parameters, the ethylene yield is 72%. 5% Cobalt catalysts modified with 1.5% aluminum oxides are more active in hydrogenation acetylene process than 5% Со/clay 450 ℃ catalyst.

References

(1). Aitugan A.N., Tanirbergenova S.K., Tileuberdi Ye., Tugelbayeva D., Mansurov Z.A., et al. Hydrogenation of aromatic hydrocarbons on modified metal catalysts upported on carbon carrier // News of the Academy of sciences of the Republic of Kazakhstan, Series chemistry and technology 2020; V 3 (441). P. 80-87.

(2). Molnar A., Sarkany A., Varga M. Hydrogenation of carbon– carbon multiple bonds: chemo-, regio- and stereo-selectivity // J. Mol. Catalysis A: Chem. 2018. V. 173. P. 185–221. https://doi.org/10.1016/S1381-1169(01)00150-9

(3). Khan N.A., Shaikhutdinov S., Freund H.-J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts // Catalysis Lett. 2006. V. 108. P. 159–164. https://doi.org/10.1007/s10562-006-0041-y

(4). Kang J.H., Shin E.W., Kim W.J., Park J.D., Moon S.H., Selective hydrogenation of acetylene on Pd/SiO2 catalysts promoted with Ti, Nb and Ce oxides // Catalysis Today. 2000. V. 63. P. 183–188. https://doi.org/10.1016/S0920-5861(00)00458-2

(5). Aitugan A.N., Tanirbergenova S.K., Tileuberdi Ye., Ongarbaev Ye.K., Mansurov Z.A. Catalysts for hydrocarbon hydrogenation process // Горения и плазмохимия 2019. V.17. P. 57-64. https://doi.org/10.18321/cpc278

(6). Kartonagen O. I., pack, A. M., Zharmagambetov A. M., Jakshybaev M. J., A. T. Zamanbekova Copper polymer containing catalysts for stereoselective hydrogenation of acetylene compounds // Izvestiya NAS RK. Chemical series. – 2016. – N 5. – P. 12-17.

(7). Zharmagambetov A. M., Kartonagen O. I., Jakshybaev M. J., Pak, A. M., Zamanbekova A. T. Stereoselective hydrogenation of 9-tricosene on magnetoelectric catalysts, ligands fixed on the carrier // News of the scientific and technical society «KAHAK». – 2006. – № 1(14). – P. 18-22.

(8). Yerbol Tileuberdi, Yerdos Ongarbayev, Zulkhair Mansurov, Yerzhan Imanbayev, Nurzhamal Otarova , Marat Tulepov. Оbtаining саrbоn mаtеriаls frоm rubbеr сrumb. Procedia Computer Science 158, 334– 337, (2019). https://doi.org/10.1016/j.procs.2019.09.059

(9). Oosthuizen R.S., Nyamori V.O. Carbon nanotubes as supports for palladium and bimetallic catalysts for use in hydrogenation reactions // Platinum Metals Rev. 2011. V. 55. P. 154–169. https://doi.org/10.1595/147106711X577274

(10). Chernyak S.A., Suslova E.V., Ivanov A.S., Egorov A.V., Maslakov K.I., Savilov S.V., Lunin V.V. Co catalysts supported on oxidized CNTs: Evolution of structure during preparation, reduction and catalytic test in Fischer-Tropsch synthesis // Appl. Catalysis A: General. 2016. V. 523. P. 221–229. https://doi.org/10.1016/j.apcata.2016.06.012

(11). Bezemer G.L., Bitter J.H., Kuipers H.P.C.E., Oosterbeek H., Holewijn J.E., Xu X., Kapteijn F., A. van Dillen J., de Jong K.P. Cobalt particle size effects in the Fischer−Tropsch reaction studied with carbon nanofiber supported catalysts // J. Am. Chem. Soc. 2006. V. 128. №12. P. 3956–3964. https://doi.org/10.1021/ja058282w

(12). Asedegbega-Nieto E., Bachiller-Baeza B., Kuvshinov D.G., García-García F.R., Chukanov E., Kuvshinov G.G., GuerreroRuiz A., Rodríguez- Ramos I., Effect of the carbon support nanostructures on the performance of Ru catalysts in the hydrogenation of paracetamol // Carbon. 2018. V.46. P. 1046–1052. https://doi.org/10.1016/j.carbon.2008.03.013

(13). S.K. Tanirbergenova, N.K. Zhylybayeva, S.Zh. Tairabekova, D.A. Tugelbayeva,G.M. Naurzbayeva, G.М. Moldazhanova, Z.A. Mansurov. Catalyc effect nanosized catalysts in the process of hydrogenating acetylene to ethylene. 21st World Nanotechnology Congress, 58, 15-17, (2018). https://doi.org/10.18321/ectj730

(14). Ivanova E. S. possibilities of predicting sorption activity of natural clay // Izvestiya RSPU named after A. I. Herzen: Scientific journal. 2013. no. 157. P. 90-95.

Published

2020-10-10

How to Cite

Aitugan, A., Tanirbergenova, S., Tileuberdi, Y., & Tugelbayeva, D. (2020). MODIFIED COBALT CATALYSTS FOR HYDROGENATION OF HYDROCARBONS. Combustion and Plasma Chemistry, 18(3), 156–161. https://doi.org/10.18321/cpc364