Synthesis of calcium hydroxyapatite and its use for obtaining biologically soluble matrices based on polymer fibers

Authors

  • A.S. Chekiyeva K.I. Satbayev Kazakh National Technical Research University, 22a Satbayev street, Almaty, Kazakhstan
  • Ch.B. Daulbaev Institute of combustion problems, 172 Bogenbai batyr street, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 al-Farabi avenue, Almaty, Kazakhstan
  • F.R. Sultanov Institute of combustion problems, 172 Bogenbai batyr street, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 al-Farabi avenue, Almaty, Kazakhstan
  • B. Bakbolat Institute of combustion problems, 172 Bogenbai batyr street, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 al-Farabi avenue, Almaty, Kazakhstan
  • R.I. Gadylshina Al-Farabi Kazakh National University, 71 al-Farabi avenue, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc363

Keywords:

Calcium hydroxyapatite, eggshell, electrospinning, polymer fibers.

Abstract

In this paper, we consider the possibility of synthesizing calcium hydroxyapatite (HAP) using biogenic sources of calcium carbonate, namely calcite in the shell of a chicken egg. HAP powders were synthesized by precipitation from an aqueous solution. This synthesis method allowed us to obtain HAP powders with a purity of 95%. During experimental work, it was found that the ultrasonic treatment time provides particles with more uniformity than long-term heat treatment. The synthesized HAP powder was used to obtain biologically soluble films based on polymer fibers. Films were obtained by the method of electroforming. A drug, in particular amoxicillin, was added to the solution of films at different concentrations. Experimental work showed that the thickness of the films depends on the concentration of the drug substance. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize HAP and films.

References

(1). C.R.M. Black, V. Goriainov, D. Gibbs, J. Kanczler, R.S. Tare, R.O.C. Oreffo, Bone tissue engineering // Curr. Mol. Biol. Reports 1 – 2015. – P.132–140. https://doi.org/10.1007/s40610-015-0022-2

(2). Matsuda T., Yamanaka C. and Ikeda M. ESR study of Gd3+ and Mn2+ ions sorbed on hydroxyapatite // Appl. Radiat. Isotopes – 2005. – №62. – P.353-357. https://doi.org/10.1016/j.apradiso.2004.08.022

(3). Thakur P., Moore R.C. and Chopin G.R., Sorption of U(VI) species on hydroxyapatite // Radiochim. Acta – 2005. – №93. – P. 385-391. https://doi.org/10.1524/ract.2005.93.7.385

(4). Martini F.H., Fundamentals of Anatomy & Physiology – San Francisco: Pearson Benjamin Cummings, 2006.

(5). Park J.B., Bronzino. J.D., Biomaterials Principles and Applications – Boca Raton: CRC Press, 2003. https://doi.org/10.1201/9781420040036

(6). Cazalbou S, Eichert D, Ranz X, Drouet C, Combes C, et al. Ion exchanges in apatites for biomedical applications // J Mater Sci: Mater Med – 2005. – №16. – P.405-409. https://doi.org/10.1007/s10856-005-6979-2

(7). Jiang.M., Terra.J., Rossi.A.M., Morales.M.A., Baggio Saitovitch. E.M., et al. Fe2+/Fe3+ substitution in hydroxyapatite // Theory and experiment. Phys Rev B, Condens Matter Mater: Phys – 2002. – №66. – P. 224-107. https://doi.org/10.1103/PhysRevB.66.224107

(8). Wang J, Nonami T, Yubata K ., Synthesis, structure and photophysical properties of iron containing hydroxyapatite prepared by a modified pseudo-body solution // J Mater Sci: Mater Med. – 2008.– №19. – P. 2663-2667. https://doi.org/10.1007/s10856-007-3365-2

(9). Prakash K.H., Kumar.R., Ooi C.P., Sritharan.T., Cheang.P., et al. Wet Chemical Synthesis and Magnetic Property Studies of Fe (III) Ion Substituted Hydroxyapatite // MCB 2006. – №3. – P. 177-178.

(10). Qu H, Vasiliev AV, Aindow M, Wei M., Incorporation of Fluorine Ions in Hydroxyapatite by a pH Cycling Method // J Mater Sci Mater Med. – 2005. – №16. – P.447-453. https://doi.org/10.1007/s10856-005-6985-4

(11). Rogers, W.J.; Basu, P. Factors regulating macrophage endocytosis of nanoparticles: Implications for targeted magnetic resonance plaque imaging // Atherosclerosis – 2005. – №178. – P. 67–73. https://doi.org/10.1016/j.atherosclerosis.2004.08.017

(12). Ganesh C. Ingavle, Marissa Gionet-Gonzales, Charlotte E. Vorwald, et al., Injectable mineralized microsphere-loaded composite hydrogels for bone repair in a sheep bone defect model // Biomaterials – 2019. – №197. – P.119–128. https://doi.org/10.1016/j.biomaterials.2019.01.005

(13). Wouter Habraken, Pamela Habibovic, Matthias Epple, et al., Calcium phosphates in biomedical applications: materials for the future // Materials Today – 2016. – №19. – P. 69-87. https://doi.org/10.1016/j.mattod.2015.10.008

(14). Yau-Hung Chen, Hung-Yin Tai, Earl Fu, et al., Guided bone regeneration activity of different calcium phosphate/chitosan hybrid membranes // International Journal of Biological Macromolecules – 2019. – №126. – P.159–169. https://doi.org/10.1016/j.ijbiomac.2018.12.199

(15). Daulbayev, C., Mitchell, G., Zakhidov, A., Sultanov, F., Mansurov, Z. Obtaining of biologically soluble membranes based on polymeric nanofibres and hydroxyapatite of calcium // Eurasian Chemico-Technological Journal, 2018, 20(2), P. 119-124. https://doi.org/10.18321/ectj690

(16). S. Chen, S. Pujari-Palmer, S. Rubino, V. Westlund, M. Ott, H. Engqvist, W. Xia, Highly repeatable synthesis of nHA with high aspect ratio // Mater Lett. – 2015. – №159. – P. 163-167. https://doi.org/10.1016/j.matlet.2015.06.086

(17). K. Prabakaran, S. Rajeswari, Spectroscopic investigations on the synthesis of nano hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template // Spectrochim. Acta A – 2009. – №74. – P. 1127–1134. https://doi.org/10.1016/j.saa.2009.09.021

(18). W.-F. Ho, H.-C. Hsu, S.-K. Hsu, C.-W. Hung, S.-C. Wu, Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction // Ceram. Int. – 2013. – №39. – P. 6467–6473. https://doi.org/10.1016/j.ceramint.2013.01.076

(19). W.J. Stadelman, Egg and egg products, in: F.J. Francis (Ed.), Encycl. Food Sci. Technol., John Wiley & Sons – New York, 2000. – P. 593–599.

(20). F. Sultanov, C. Daulbayev, B. Bakbolat, O. Daulbayev, M. Bigaj, Z. Mansurov, K. Kuterbekov, K. Bekmyrza. Aligned composite SrTiO3/PAN fibers as 1D photocatalyst obtained by electrospinning method // Chemical Physics Letters. – 2019. – V. 737. https://doi.org/10.1016/j.cplett.2019.136821

Published

2020-10-10

How to Cite

Chekiyeva, A., Daulbaev, C., Sultanov, F., Bakbolat, B., & Gadylshina, R. (2020). Synthesis of calcium hydroxyapatite and its use for obtaining biologically soluble matrices based on polymer fibers. Combustion and Plasma Chemistry, 18(3), 149–155. https://doi.org/10.18321/cpc363

Most read articles by the same author(s)