3D-calculation of plasma assisted Ecibastuz coal combustion at reftinsk PK- 39-II furnace boiler

Authors

  • V.E. Messerle Institute of Combustion Problems, 172 Bogenbay batyr st., Almaty, Kazakhstan
  • К.А. Umbetkaliev Institute of Combustion Problems, 172 Bogenbay batyr st., Almaty, Kazakhstan
  • A.B. Ustimenko Plasmatechnics R&D LLP, Institute of Experimental and Theoretical Physics of al- Farabi Kazakh National University, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc356

Keywords:

coal, combustion, plasma activation, plasma-fuel system, 3D-calculation, furnace boiler.

Abstract

Results of calculations of plasma-assisted coal ignition and combustion in a furnace of PK-39-II boiler at Reftinsk District Power Plant are considered in this paper. The calculations fulfilled using Plasma-Coal and Cinar ICE kinetic calculation codes. For mathematical modeling of coal combustion process in a furnace boiler, a 3D mathematical Cinar ICE model has been used. Cinar ICE is computerbased program for physical modeling and calculation of hydrodynamics, heat and mass transfer and fuels combustion in furnaces. Equations for mass and momentum conservation are solved by the volume control method using Patankar algorithm. For gas phase to describe time-average conservation equations Euler approach has been used. In Euler approach particles interpreted as a pseudo-gas, i.e., considered only source or mass flow, momentum and energy exchange. To simulate behavior of a solid phase, Lagrange approach is used. It takes into account the dynamic and thermal delay of particles, moving in a flow. Standard k-ε model of turbulence is used to describe turbulence. Two regimes of pulverized coal combustion were calculated and compared, traditional one and plasma-assisted coal combustion regime. It is showed that using plasma-fuel systems to activate solid fuel combustion allows optimizing coal combustion in the furnace boiler. Analysis of main characteristics of the process of combustion shows that application of plasma-fuel systems for furnace startup and stabilization of combustion of the  pulverized coal flame has a positive effect on the characteristics of combustion process, reducing NO emission and unburned carbon both in combustion space and at the outlet. Using of 12 plasma-fuel systems allows reducing at the outlet of furnace, combustion product’s temperature by 7%, NOx emission by 40%, oxygen concentration by 6% and unburned curbon by 43%.

References

(1). BP Energy Outlook 2035. February 2015. BP p.l.c., 2015. 98 p. http://www.bp.com/content/dam/bp/pdf/energy-economics/ energy-outlook-2015/bp-energy-outlook- 2035-booklet.pdf

(2). Key World Energy Statistics 2012: International Energy Agency. OECD/IEA, Paris, 2012. – 80 p.

(3). Key World Energy Statistics 2011 Edition, International Energy Agency, OECD/IEA, Paris, 2011. – 80 p.

(4). Messerle V.E., Ustimenko A.B. Coal Combustion: Plasma-Assisted. In Encyclopedia of Plasma Technology. Edited by J. Leon Shohet. CRC Press 2016. Published: 07 Feb 2017. P. 269–283. Print ISBN: 978-1-4665-0059-4; eBook ISBN: 978-1-4822-1431-4. https://doi.org/10.1081/E-EPLT-120053800

(5). Messerle V.E., Karpenko Е.I., Ustimenko A.B. Plasma assisted power coal combustion in the furnace of utility boiler: Numerical modeling and full-scale test // Fuel, 2014. – V. 126. – P. 294–300. https://doi.org/10.1081/E-EPLT-120053800

(6). Карпенко Е.И., Мессерле В.Е. Плазменно-э- нергетические технологии использования твердых топлив. // Энциклопедия низкотемпературной плазмы. / Под ред. академика РАН Фортова, В.Е. — М.: Наука. 2000. Т.4. – С.359–370.

(7). V.E. Messerle, A.B. Ustimenko. Plasma-assisted ignition and combustion of pulverized coal // Scientific Program & Book of Abstracts of the 11th International Symposium on Non-Thermal/Thermal Plasma Pollution Control Technology & Sustainable Energy, Montegrotto Terme, Italy, July 1-5, 2018. – P. 49.

(8). Мессерле В.Е., Устименко А.Б. Плазменное воспламенение и горение твердого топлива. (Научно-технические основы). // Saarbrucken, Germany: Palmarium Academic Publishing (ISBN: 978-3-8473-9845-5), 2012. – 404 с.

(9). Messerle V.E., Karpenko E.I., Ustimenko A.B., Lavrichshev O.A. Plasma preparation of coal to combustion in power boilers // Fuel Processing Technology, March 2013. – V. 107. – P. 93–98. https://doi.org/10.1016/j.fuproc.2012.07.001

(10). Lockwood F.C., Mahmud T., Yehia M.A. Simulation of pulverised coal test furnace performance // Fuel, 1998. – V. 77, No.12. – P. 1329–1337. https://doi.org/10.1016/S0016-2361(97)00294-9

(11). Lockwood F.C., Saloja A.P. and Syed S.A. A Prediction Method for Coal Fired Furnaces. // Combustion and Flame, 1980. – V. 38. – P. 1–15. Crossref

(12). Patankar S.V. Numerical heat transfer and fluid flow, Taylor & Francis. London, 1980.

(13). Levy J.F. Prediction of Flows, Combustion and Heat Transfer in Coal Fired Cement Kilns, Ph.D. Thesis, University of London, London, 1991.

(14). Jones W.P., Launder B.E. The Prediction of Laminarization with a Two-equation model of Turbulence // Int. J. Heat and Mass Transfer, 1972. – V. 15, No.2. – P. 301–314. https://doi.org/10.1016/0017-9310(72)90076-2

(15). Kandamby N.H., Lazopoulos G., Lockwood F.C., Perera A., Vigerano L. // Proceedings of the ASME IJPGC Conference, Huston, Texas, October 1996.

(16). Anthony D.B., Howard J.B. Coal Devolatilisation and Hydro-gasification, A.I.Ch.E Journal, 1976. – V. 22, No. 4. https://doi.org/10.1002/aic.690220403

(17). Badzioch S. and Hawkesley P.G.W. Kinetics of Thermal Decomposition of Pulverised Coal Particles, Ind. Eng. Chem. Process Des. Develop., 1970. – V. 9, No. 4. https://doi.org/10.1021/i260036a005

(18). Field M.A., Gill D.W., Morgan B.B., Hawksley P.G.W. Combustion of Pulverised Coal, BCURA, England, Publisher: Cheney &Sons Ltd, England, 1968.

(19). Arscott J.A., Gibb J., Jenner R. European Symposium, The Combustion Institute, Sheffield, 1973.

(20). Trulove J.S. A Mixed Grey Gas Model for Flame Radiation, AERE HARWELL R-8494, 1976.

(21). DeSoete G.G. // Overall Reaction Rates of NO and N2 Formation from Fuel Nitrogen // Proceedings of the 15th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1975. – P. 1093. https://doi.org/10.1016/S0082-0784(75)80374-2

(22). DeSoete G.G. // Heterogeneous N2O and NO Formation from Bound Nitrogen Atoms during Coal Char Combustion / Proceedings of the 23rd Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1990. – P. 1257. https://doi.org/10.1016/S0082-0784(06)80388-7

(23). Sawyer R.F. // The Formation and Destruction of Pollutants in Combustion Processes: Clearing the Air on the Role of Combustion Research // Proceedings of the 18th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1981. – P. 1. https://doi.org/10.1016/S0082-0784(81)80006-9

(24). Levy J., Chan L., Sarofim A. and Beer J. NO/Char Reactions at Pulverised Coal Flame Conditions, Proceedings of the 19th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1981. – P. 111. https://doi.org/10.1016/S0082-0784(81)80016-1

(25). Dimitriou D., Kandamby N.H. and Lockwood F.C. A Mathematical Modelling Technique for Gaseous and solid Fuel Reburning in Pulverised Coal Combustors // Fuel. – 2003. – V. 82, No.15–17. – P. 2107–2114. https://doi.org/10.1016/S0016-2361(03)00184-4

(26). Messerle V.E., Ustimenko A.B., Umbetkaliev K.A. Plasma ignition of dust-coal flame // Горение и плазмохимия, 2019. – Т.17, №1. – С. 14–22. https://doi.org/10.18321/cpc285

(27). Gorokhovski M., Karpenko E.I., Lockwood F.C., Messerle V.E., Trusov B.G., Ustimenko A.B. Plasma Technologies for Solid Fuels: Experiment and Theory. // Journal of the Energy Institute, 2005. – V. 78, N 4. – P. 157–171. https://doi.org/10.1179/174602205X68261

Published

2020-10-10

How to Cite

Messerle, V., Umbetkaliev К., & Ustimenko, A. (2020). 3D-calculation of plasma assisted Ecibastuz coal combustion at reftinsk PK- 39-II furnace boiler. Combustion and Plasma Chemistry, 18(3), 111–126. https://doi.org/10.18321/cpc356