3D printing materials: selection energy intensive materials

Authors

  • G.M. Naurzbayeva The institute of combustion problems, Bogenbai batyr str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh national university, ave. Al-Farabi 71, Almaty, Kazakhstan
  • Sh.T. Sultakhan The institute of combustion problems, Bogenbai batyr str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh national university, ave. Al-Farabi 71, Almaty, Kazakhstan
  • М. Нажипкызы The institute of combustion problems, Bogenbai batyr str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh national university, ave. Al-Farabi 71, Almaty, Kazakhstan
  • G.R. Mitchell Polytechnic institute of Leiria, General Norton de Matos str., 2411-901, Leiria, Portugal; Centre for rapid and sustainable product development, Rua de Portugal str., 2430-028, Marinha Grande, Portugal

DOI:

https://doi.org/10.18321/cpc354

Keywords:

additive manufacturing, energy intensive (energetic) materials, 3D printing.

Abstract

In recent years, 3D printing techniques, also called as additive manufacturing (AM), have moved beyond their traditional applications in industrial production and prototyping. This article gives a brief discussion of energy-intensive (energetic) materials, as well as additive manufacturing most commonly used for technologies. In the process of experiment, we obtained suitable energyintensive materials for 3D printing, thermite, we used nitrocellulose as a binder. Thermodynamic analysis of gasification processes with the universal TERRA program was carried out. And energy-intensive materials were investigated in different ratios. Our goal is to choose the right energy-intensive material for adapted 3D printing.

References

(1). Carrico C.M., Gomez S.L., Dubey M.K., Aikenb A.C. Low hygroscopicity of ambient fresh carbonaceous aerosols from pyrotechnics smoke. Atmos. Environ. – 2018, 178. – P.101-108. https://doi.org/10.1016/j.atmosenv.2018.01.024

(2). Yin J.W., Zhao L.S., Du Z.M., Xing Q.F., Zhao Z.H. Study on combustion heat of pyrotechnics. Procedia Eng. – 2014, 84. – P.849-853. https://doi.org/10.1016/j.proeng.2014.10.505

(3). Lyons G.W., Raspet R. Chemical kinetics theory of pyrotechnic whistles. J. Acoust. Soc. Am. – 2015. 137. 2200. https://doi.org/10.1121/1.4920000

(4). Poret J., Sabatini J. Comparison of barium and amorphous boron pyrotechnics for green light emission. J. Energy Mater. 2013, 31. – P. 27-34. https://doi.org/10.1080/07370652.2011.588301

(5). Berger B. Parameters influencing the pyrotechnic reaction. Propell. Explos. Pyrot. 2005, 30. – P.27-35. https://doi.org/10.1002/prep.200400082

(6). Calais T., Bancaud A., Estève A., Rossi C. Correlation between DNA self-assembly kinetics, microstructure, and thermal properties of tunable highly energetic Al- CuO nanocomposites for micropyrotechnic applications. ACS Appl. Nano Mater. 2018, 1. – P. 4716-4725. https://doi.org/10.1021/acsanm.8b00939

(7). De Lisio. Understanding the relationships between architecture, chemistry, and energy release of energetic nanocomposites, Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, Maryland, 2017. – P. 194.

(8). Luigi T. De Luca, Toru Shimada, Valery P. Sinditskii, Max Calabro, and Anthony P. Manzara. An introduction to energetic materials for propulsion. – P. 58. – 2017.

(9). David I. A. Millar. Energetic materials at extreme conditions. Doctoral Thesis accepted by University of Edinburgh, UK. – 2012. – P. 232.

(10). Miles C. Rehwold, Haiyang Wang, Dylan J.Kline, TaoWu, Noah Eckman, Peng Wang, Niti R. Agrawa, Michael R. Zachariah. Ignition and combustion analysis of direct write fabricated aluminum/metal oxide/PVDF films // Combustion and Flame. – V. 211. – 2020. – P. 260-269. https://doi.org/10.1016/j.combustflame.2019.08.023

(11). Long Cheng, Hongtao Yang, Yue Yang, Yifan Li, Yingyi Meng, Yanchun Li, Dongming Song, Houhe Chen, Ramón Artiaga. Preparation of B/Nitrocellulose/Fe particles and their effect on the performance of an ammonium perchlorate propellant // Combustion and Flame, 211. – P.456-464. https://doi.org/10.1016/j.combustflame.2019.10.017

(12). З.А. Мансуров, Е.Т. Алиев, Т.П. Дмитриев, Ч.Б. Даулбаев. Аддитивные технологии (3D Printing): монография. Алматы, Қазақ университеті, 2017, 191 c.

(13). Наурзбаева Г.М., Нажипкызы М., Жылыбаева Н.К., Мансуров З.А., Митчелл Дж. Р. Перспективы развития 3D-печати // Горение и плазмохимия, № 4, Том 17, 2019. С. 221-228. https://doi.org/10.18321/cpc333

(14). Gorokhovski M., Karpenko E.I. Plasma technologies for solid fuels: experiment and theory// Journal of Energy Institute. – 2005. – 78 (4). – P.157-171. https://doi.org/10.1179/174602205X68261

Published

2020-06-30

How to Cite

Naurzbayeva, G., Sultakhan, S., Нажипкызы, М., & Mitchell, G. (2020). 3D printing materials: selection energy intensive materials. Combustion and Plasma Chemistry, 18(2), 103–109. https://doi.org/10.18321/cpc354