Influence of the composition of gas mixtures on their self-ignition delay and normal flame

Authors

  • V.S. Arutyunov Federal Research Center of Chemical Physics N.N. Semenov Russian Academy of Sciences, 119991, Russia, Moscow, Kosygina, 4
  • K. Ya. Troshin Federal Research Center of Chemical Physics N.N. Semenov Russian Academy of Sciences, 119991, Russia, Moscow, Kosygina, 4
  • А.А. Belyaev Federal Research Center of Chemical Physics N.N. Semenov Russian Academy of Sciences, 119991, Russia, Moscow, Kosygina, 4
  • A.V. Arutyunov Federal Research Center of Chemical Physics N.N. Semenov Russian Academy of Sciences, 119991, Russia, Moscow, Kosygina, 4
  • A.V. Nikitin Federal Research Center of Chemical Physics N.N. Semenov Russian Academy of Sciences, 119991, Russia, Moscow, Kosygina, 4
  • L.N. Strekova Federal Research Center of Chemical Physics N.N. Semenov Russian Academy of Sciences, 119991, Russia, Moscow, Kosygina, 4

DOI:

https://doi.org/10.18321/cpc349

Keywords:

gas engine fuel, ignition delay, normal combustion rate, natural gas, associated gas, complex gas mixtures, alkanes, hydrogen

Abstract

A review of the results of experimental studies and kinetic analysis of the autoignition of mixtures of methane with alkanes С2–С6, hydrogen and a number of other gases in the temperature range 700–1000 K and pressures 1–15 atm, at which their undesirable spontaneous ignition in ICEs with spark ignition is possible, is presented. It is shown that, despite the large difference in the reactivity of C2–C6 alkanes, the effect of their additives on the ignition delay of methane is practically the same. For multicomponent methanealkane mixtures, the autoignition delay is determined by the total concentration of alkanes and practically does not depend on its detailed composition. This made it possible to obtain analytical dependences for calculating the autoignition delay of complex methanealkane mixtures. The obtained experimental results are well described in the computer simulation of ignition. Along with the almost identical effect of the impurity of all C2–C6 alkanes, this makes it possible to replace the complex procedure of motor tests of gas fuels with their computerized assessment. A significant difference in the temperature dependence of the autoignition delay of methane, hydrogen, and their mixtures, associated with fundamental differences in the mechanisms of their oxidation, is shown.

References

(1). Statistical Review of World Energy 2020.| 69th edition. https://www.bp.com/content/dam/bp/businesssites/en/global/corporate/pdfs/energy-economics/ statistical-review/bp-stats-review-2020-full-report.pdf

(2). Kvenvolden K.A. Methane hydrate – a major reservoir of carbon in the shallow geosphere? Chem. Geol., 1988, v.71, p.41–51. https://doi.org/10.1016/0009-2541(88)90104-0

(3). Макогон Ю.Ф. Природные газогидраты: открытие и перспективы. Газовая промышленность. 2001, №5, с.10–16.

(4). Арутюнов В.С., Лапидус А.Л. Роль газохимии в мировой энергетике. Вестник РАН. 2005. Т. 75. № 8. С. 683-693.

(5). ГОСТ 5542-2014. Газы горючие природные промышленного и коммунально-бытового назначения.

(6). Арутюнов В.С., Голубева И.А., Елисеев О.Л., Жагфаров Ф.Г. Технология переработки углеводородных газов. Учебник для вузов. М.: Юрайт. 2020. -723 с. ISBN 978-5-534-12398-2

(7). Xiao H., Lai S., Valera-Medina A., Li J., Liu J., Fu H. Experimental and modeling study on ignition delay of Experimental and modeling study on ignition delay of ammonia/methane fuels ammonia/methane fuels. Int J Energy Res. 2020. https://doi.org/10.1002/er.5460

(8). В.С.Арутюнов, М.Ю.Синев, В.М.Шмелев, А.А.Кирюшин. Газохимическая конверсия попутного газа для малой энергетики. Газохимия. 2010. №1 (11). С.16-20.

(9). Никитин А.В., Трошин К.Я., Беляев А.А., Арутюнов А.В., Кирюшин А.А., Арутюнов В.С. Газомоторное топливо из попутного нефтяного газа. Селективный оксикрекинг тяжелых компонентов ПНГ. НефтеГазоХимия. 2018. № 3. С. 23–34. DOI: 10.24411/2310-8266-2018-10301.

(10). Иванов С.С., Тарасов М.Ю. Требования к подготовке растворенного газа для питания газопоршневых двигателей. Нефтяное хозяйство. 2011. № 1. С. 102.

(11). Gupta S.B., Biruduganti M., Bihari B., Sekar R. Natural Gas Fired Reciprocating Engines for Power Generation: Concerns and Recent Advances, Chapter 10. InTech. 2012. P. 211.

(12). Meher-Homji C.B., Zachary J., Bromley A.F. Proceedings of the Thirty-Nine Turbomachinery Symposium. 2010. P. 155.

(13). Natural gas as fuel. Fuel Quality Calculator. URL: http:// www.cumminswestport.com/fuel-Quality-calculator.

(14). Burcat A., Scheller K., Lifshitz A. Shocktube investigation of comparative ignition delay times for C1–C5 alkanes. Combust. Flame. 1971. V. 16. P. 29–33. https://doi.org/10.1016/S0010-2180(71)80007-X

(15). Lamoureux N., Paillard C.-E., Vaslier V. Low hydrocarbon mixtures ignition delay times investigation behind reflected shock waves. Shock Waves. 2002. V. 11. P. 309–322. https://doi.org/10.1007/s001930100108

(16). Baigmohammadi M., Patel V., Nagaraja S., Martinez S., Panigrahy S., Ramalingam A., Burke U., Somers K.A. Heufer K.A., Pekalski A., Curran H.J. A comprehensive experimental and simulation study of ignition delay time characteristics of single fuel C1−C2 hydrocarbons over a wide range of temperatures, pressures, equivalence ratios, and dilutions. Energy Fuels, 2020, V. 34, P. 3755–3771. https://dx.doi.org/10.1021/acs.energyfuels.9b04139. https://doi.org/10.1021/acs.energyfuels.9b04139

(17). Gersen S, Darmeveil H, Levinsky H. The effects of CO addition on the autoignition of H2, CH4 and CH4/H2 fuels at high pressure in an RCM. Comb Fl 2012; 159:3472–3475. https://doi.org/10.1016/j.combustflame.2012.06.021

(18). Goldsborough SS, Hochgreb S, Vanhove G, Wooldridge MS, Curran HJ, Chih-Jen Sung. Advances in rapid compression machine studies of low- and intermediate-temperature autoignition phenomena. Progr. Energy Combust. Sci. 2017. V. 63. P. 1–78. https://doi.org/10.1016/j.pecs.2017.05.002

(19). Healy D., Curran H. J., Dooley S., Simmie J., Kalitan D., Petersen E., et al. Methane/propane mixture oxidation at high pressures and at high, intermediate and lowtemperatures. Combust. Flame. 2008. V. 155. P. 441–448. https://doi.org/10.1016/j.combustflame.2008.07.003

(20). Westbrook C.K., Sjöberg M., Cernansky N.P. A new chemical kinetic method of determining RON and MON values for single component and multicomponent mixtures of engine fuels. Comb. Fl. 2018. V. 195. P. 50–62. https://doi.org/10.1016/j.combustflame.2018.03.038

(21). Трошин К.Я., Никитин А.В., Борисов А.А., Арутюнов В.С. Экспериментальное исследование воспламенения бинарных смесей метана с добавками алканов С3–С5 в воздухе. Горение и взрыв. 2015. Т.8. №1. С.42–49.

(22). Трошин К.Я., Никитин А.В., Борисов А.А., Арутюнов В.С. Определение задержек самовоспламенения метановоздушных смесей с добавками алканов С2–С5. Горение и взрыв. 2016. Т.9. №2. С.23–30.

(23). Трошин К.Я., Никитин А.В., Борисов А.А., Арутюнов В.С. Низкотемпературное воспламенение в воздухе бинарных смесей метана с алканами С3–С5. Физика горения и взрыва. 2016. Т.52. №4. С. 15–23.

(24). Трошин К.Я., Никитин А.В., Беляев А.А., Арутюнов А.В., Кирюшин А.А., Арутюнов В.С. Экспериментальное определение задержки самовоспламенения смесей метана с легкими алканами. Физика горения и взрыва. 2019. Т. 55. №5. С. 17–24. DOI 10.15372/FGV20190502

(25). Scott Goldsborough S., Hochgreb S., Vanhove G., Wooldridge M. S., Curran H. J., Sung C.-J. Advances in rapid compression machine studies of low-and intermediate-temperature autoignition phenomena. Prog. Energy and Combust. Sci. 2017. V. 63. P. 1–78. https://doi.org/10.1016/j.pecs.2017.05.002

(26). Zhang P., Ran J., Qin C., Du X., Niu J., Yang L. Effects of methane addition on exhaust gas emissions and combustion efficiency of the premixed n-heptane/air combustion. Energy Fuels. 2018. V. 32. P. 3900–3907. https://doi.org/10.1021/acs.energyfuels.7b03469

(27). Baigmohammadi M., Patel V., Nagaraja S., Ramalingam A., Martinez S., Panigrahy S., El-Sabor Mohamed A.A., Somers K.P., Burke U., Heufer K.A., Pekalski A., Curran H.J. Comprehensive experimental and simulation study of the ignition delay time characteristics of binary blended methane, ethane, and ethylene over a wide range of temperature, pressure, equivalence ratio, and dilution. Energy Fuels, 2020, V. 34, P. 8808−882. https://doi.org/10.1021/acs.energyfuels.0c00960

(28). Arutyunov V.S., Magomedov R.N., Proshina A.Yu., Strekova L.N. Oxidative conversion of light alkanes diluted by nitrogen, helium or methane // Chem. Eng. J. 2014. V. 238. P. 9-16. https://doi.org/10.1016/j.cej.2013.10.009

(29). Арутюнов В.С. Окислительная конверсия природного газа. М.: КРАСАНД, 2011.

(30). Арутюнов А.В. Дисс. на соиск. уч. ст. к.ф.-м.н. Москва, ФИЦ ХФ РАН, 2020 г.

(31). Арутюнов А.В., Беляев А.А., Никитин А.В., Трошин К.Я., Арутюнов В.С. Моделирование задержек самовоспламенения метановоздушных смесей с добавками легких алканов. Горение и взрыв. 2019. Т. 12. №3. С. 14-20. https://doi.org/10.30826/CE19120302

(32). NUI Galway. Combustion Chemistry Center. Natural Gas III Mechanism. URL:http://с3.nuigalway.ie/naturalgas3.html

(33). BP Statistical Review of World Energy 2018. URL: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/investors/bp-annualreport-and-form-20f-2018.pdf

(34). Хачиян А.С., Водейко В.Ф. Использование водорода в качестве моторного топлива для автомобильных двигателей внутреннего сгорания. Транспорт на альтернативном топливе. 2008. № 3. С. 57–61.

(35). Verhelst S., Wallner T. Hydrogen-fueled internal combustion engines. Progress in Energy and Combustion Science. 35 (2009) 490–527. https://doi.org/10.1016/j.pecs.2009.08.001

(36). Arutyunov V., Troshin K., Nikitin A., Belyaev A., Arutyunov A., Kiryushin A., Strekova L. Selective oxycracking of associated petroleum gas into energy fuel in the light of new data on self-ignition delays of methane-alkane compositions. Chem. Eng. J. 2019. https://doi.org/10.1016/j.cej.2019.122706

(37). Арутюнов В.С., Рудаков В.М., Савченко В.И. и др. Кинетика парциального окисления алканов при высоких давлениях. Окисление метана в реакторах с поверхностью из нержавеющей стали и кварца. Теоретические основы химической технологии. 2002. Т. 36. № 5. С. 518–523.

(38). V. Arutyunov. Direct Methane to Methanol: Foundations and Prospects of the Process. 2014, Elsevier B.V., Amsterdam, The Netherlands. https://doi.org/10.1016/B978-0-444-63253-1.02001-8

(39). Sarathy S.M., Westbrook C.K., Pitz W.J., Mehl M., Togbe C., Dagaut P., Wang H., Oehlschlaeger M., NIemann U., Seshadri K., Veloo P.S., Ji C., Egolfopoulos F., Lu T. Comprehensive chemical kinetic modeling of the oxidation of C8 and larger n-alkanes and 2-methylalkanes. Lawrence Livermore National Laboratory, 2011. https://doi.org/10.1016/j.combustflame.2011.05.007

(40). Трошин К.Я., Беляев А.А., Арутюнов А.В., Царенко А.А., Никитин А.В., Арутюнов В.С. Влияние давления на самовоспламенение метан-водородных смесей. Горение и взрыв. 2020. Т. 13. №1. С. 18-32. https://doi.org/10.30826/CE20130102

(41). Hermanns R.T.E. Laminar Burning Velocities of Methane-Hydrogen-Air Mixtures. Proefschrift. Technische Universiteit Eindhoven. 2007. (A catalogue record is available from the Eindhoven University of Technology Library. ISBN: 978-90-386-1127-3).

(42). Konnov A.A., Riemeijer R., de Goey L.P.H. Adiabatic laminar burning velocities of CH4+ H2+ air flames at low pressures. Proceedings of the European Combustion Meeting 2009. https://doi.org/10.1016/j.fuel.2009.11.002

(43). Hu E., Huang Z., He J., Jin C., Zheng J. Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames. Int. J. Hydrogen Energy. 2009. V.34. P.4876–4888. https://doi.org/10.1016/j.ijhydene.2009.03.058

(44). Гельфанд Б.Е., Попов О.Е., Чайванов Б.Б. Водород: параметры горения и взрыва. Москва: Физматлит. 2008.

(45). Burluka A.A., Fairweather M., Ormsby M.P., Sheppard C.G.W. and Woolley R. The Laminar Burning Properties of Premixed Methane-Hydrogen Flames Determined Using a Novel Analysis Method. Proceedings of the Third European Combustion Meeting (ECM), 2007. 6-4 (p.1-5).

(46). Арутюнов А.В., Беляев А.А., Иновенков И.Н., Арутюнов В.С. Влияние водорода на нормальную скорость горения метан-воздушных смесей при повышенных температурах. Горение и взрыв. 2019. Т. 12. №4. С. 4-10. https://doi.org/10.30826/CE19120401

(47). Трошин К.Я., Борисов А.А., Рахметов А.Н., Арутюнов В.С., Политенкова Г.Г. Скорость горения метан-водородных смесей при повышенных давлениях и температурах. Химическая физика. 2013. Т.32. №5. С.76-87. https://doi.org/10.7868/S0207401X13050117

(48). Smith P.G., Golden D.M., Frenklach M., Moriarty N.W., Goldenberg M., Bowman C.T., Hanson R.K., Song S., Gardiner W.C., Jr., Lissianski V.V., Oin Z., from http://www.me.berkeley.edu/gri_mech/

(49). Konnov A., from http://homepages.vub.ac.be/~akonnov/

(50). Di Sarli V., Di Benedettob A. Laminar burning velocity of hydrogen–methane/air premixed flames. International Journal of Hydrogen Energy. 2007. V.32. P.637–646. https://doi.org/10.1016/j.ijhydene.2006.05.016

(51). Tatouh T., Halter F., Mounaim-Rousselle C. The Effect of Hydrogen Enrichment on CH4-Air Combustion in Strong Dilution. 31st Meeting on Combustion, Italian Section of the Combustion Institute. Firenze – ITALY. 2008. XII-13.

(52). Konnov A.A., Riemeijer R., de Goey L.P.H. Adiabatic laminar burning velocities of CH4+ H2+ air flames at low pressures. Proceedings of the European Combustion Meeting 2009. https://doi.org/10.1016/j.fuel.2009.11.002

(53). Трошин К.Я., Беляев А.А., Арутюнов А.В., Царенко А.А., Никитин А.В., Арутюнов В.С. Определение задержки самовоспламенения метан-этилен-воздушных смесей. Горение и взрыв. 2020. https://doi.org/10.30826/CE20130401

(54). Balaban A.T., Kier L.B., Joshi N. Structure-property analysis of octanenumbers for hydrocarbons (alkanes, cycloalkanes, alkenes). MATCH Commun. Math. Comput. Chem. 1992. V. 28, P. 13-27. http://match.pmf.kg.ac. rs/electronic_versions/Match28/match28_13-27.pdf

(55). Wärtsilä Calculator. https://www.wartsila.com/products/marine-oil-gas/gas-solutions/methane-number-calculator

(56). Ксандопуло Г.И., Дубинин В.В. Химия газофазного горения. М. Химия. 1987. 241с.

(57). Coward H.F., Jones Y.W. Washington. U.S. Bur. Mines Bull. 1952. P.503.

Published

2020-06-30

How to Cite

Arutyunov, V., Troshin, K. Y., Belyaev А., Arutyunov, A., Nikitin, A., & Strekova, L. (2020). Influence of the composition of gas mixtures on their self-ignition delay and normal flame. Combustion and Plasma Chemistry, 18(2), 61–80. https://doi.org/10.18321/cpc349