Propagation of a hydrogen-air flame front in channels covered with porous polyurethane foam

Authors

  • Г.Ю. Бивол Объединенный институт высоких температур Российской академии наук, 125412, ул. Ижорская, 13, стр.2, Москва, Россия
  • С.В. Головастов Объединенный институт высоких температур Российской академии наук, 125412, ул. Ижорская, 13, стр.2, Москва, Россия
  • В.В. Голуб Объединенный институт высоких температур Российской академии наук, 125412, ул. Ижорская, 13, стр.2, Москва, Россия

Keywords:

combustion, hydrogen, porous coating, polyurethane, Darrieus-Landau instability

Abstract

An acceleration of flame in a hydrogen-air mixture in a channel, the inner surface of which is covered with porous polyurethane foam, is experimentally investigated. The molar excess of the hydrogen varied from 0.3 to 1.0, and the pore size varied from 0.3 mm to 2.5 mm. The flame front propagated in a half-open channel at atmospheric pressure and room temperature. Using the Schlieren methodic and a high-speed camera, the propagation velocities of the flame front were determined depending on the pore size and composition of the mixture. The maximum recorded velocity of the flame front was 1600 m/s for a maximum pore size of 2.5 mm. The dimensions of the inhomogeneities generated at the flame front were determined. The relationship with the size of the Darrieus-Landau instability has been established. By the piezoelectric transducers, the pressure exerted by the combustion products on the lateral surface of the channel was determined. The critical Peclet numbers were found at which acceleration of the flame front and an increase in pressure behind the flame front are registered. 

References

(1). Evans M, Given F, Richeson JrW (1955) Journal of Applied Physics 26:1111–1113. Crossref

(2). Radulescu M, Lee J (2002) Combustion and Flame 131(1-2):29–46. Crossref

(3). Ciccarelli G, Johansen C, Kellenberger M (2013) Combustion and Flame 160(1):204–211. Crossref

(4). Houim R, Oran E (2017) Effect of Surface Roughness on Deflagration-to-Detonation Transition in Submilimeter Channels. 26th International Colloquium on the Dynamics of Explosions and Reactive Systems, Boston, P.6.

(5). Zhang B, Liu H, Yan B (2019) Fuel 236:975–983. Crossref

(6). Xie Q et al (2017) Journal of Loss Prevention in the Process Industries 49:753–761.Crossref

(7). Rao Z et al (2019) International Journal of Hydrogen Energy 44:5054–5062. Crossref

(8). Dupre G et al (1988) Progress in Astronautics and Aeronautics 114:248. Crossref

(9). Vasil’ev A (1994) Combustion, Explosion and Shock Waves 30:101-106. Crossref

(10). Teodorczyk A, Lee J (1995) Shock Waves 4(4):225-236. Crossref

(11). Guo C et al (2002) Shock waves 11:353-359. Crossref

(12). Makris A et al (1995) Shock Waves 5:89-95. Crossref

(13). Slungaard T, Engebretsen T, Sønju O (2003) Shock Waves 12:301-308. Crossref

(14). Pinaev A, Lyamin G (1989) Combustion, Explosion and Shock Waves 25:448-458. Crossref

(15). Bivol G, Golovastov S, Golub V (2016) Journal of Physics: Conference Series. – IOP Publishing 774(1): 012086. Crossref

(16). Chen P, Huang F, Sun Y, Chen X (2017) Journal of Loss Prevention in the Process Industries 47:22-28. Crossref

(17). Golub V et al (2018) Journal of Loss Prevention in the Process Industries 51:1-7. Crossref

(18). Maeda S et al (2019) Proceedings of the Combustion Institute 37:3609-3616. Crossref

(19). Yan X, Yu J (2013) Combustion, Explosion, and Shock Waves 49:153-158. Crossref

(20). Gubaidullin A, Britan A, Dudko D (2003) Shock Waves 13:41-48. Crossref

(21). Jin K et al (2020) International Journal of Hydrogen Energy 45:32664-32675. Crossref

(22). Surov V (2000) High Temperature 38:97-105. Crossref

(23). Bivol G et al (2019) High Temperature 57:130-132. Crossref

(24). Ram O, Sadot O (2015) Journal of Fluid Mechanics 779:842. Crossref

(25). Babkin V et al (1983) Combustion, Explosion and Shock Waves 19(2): 147-155. Crossref

(26). Prokof’ev V et al (2010) Combustion, Explosion, and Shock Waves 46(6):641-646. Crossref

(27). Tsuruda T, Hirano T (1991) Combustion and flame 84:66-72. Crossref

(28). Kadowaki S, Suzuki H, Kobayashi H (2005) Proceedings of the combustion institute 30:169-176. Crossref

(29). Altantzis C et al (2011) Proceedings of the combustion institute 33:1261-1268. Crossref

(30). Anikin N et al (2017) International Symposium on Shock Waves 261. Crossref

(31). Clanet C, Searby G (1996) Combustion and flame 105:225-238. Crossref

(32). Bychkov V et al (2017) Combustion and Flame 150:263-276. Crossref

(33). Akkerman V, Law C, Bychkov V (2011) Physical Review E 83:026305. Crossref

(34). Molkov V, Makarov D, Schneider H (2007) International journal of hydrogen energy 32:2198-2205. Crossref

(35). Bauwens C, Bergthorson J, Dorofeev S (2019) Proceedings of the Combustion Institute. 37:3669-3676. Crossref

(36). Bychkov V, Liberman M (1996) Physical review letters 76:2814. Crossref

(37). Kuznetsov M (2015) Proc. of 25th ICDERS 6.

(38). Yanez J, Kuznetsov M, Grune J (2015) Combustion and Flame 162:2830-2839. Crossref

(39). Yáñez J, Kuznetsov M, Redlinger R (2013) Combustion and flame 160:2009-2016. Crossref

(40). Veiga-López F et al (2020) Fuel. 278:118212. Crossref

(41). Valiev D et al (2013) Combustion and flame 160:97-111. Crossref

(42). Volodin V et al (2016) Combustion and plasma chemistry 4:269-278. (In Russian)

(43). Golub V et al (2019) Experimental Thermal and Fluid Science 109:109845. Crossref

(44). Elyanov A, Golub V, Volodin V (2018) Journal of Physics: Conference Series 1129:012011. Crossref

(45). Golovastov S, Samoilova A, Alexandrova D (2016) Aerospace Scientific Journal of the Bauman 5:1–15. Crossref

(46). Golovastov S, Bivol G., Alexandrova D (2019) Experimental Thermal and Fluid Science 100:124-134. Crossref

Published

2021-07-20

How to Cite

Бивол, Г., Головастов, С., & Голуб, В. (2021). Propagation of a hydrogen-air flame front in channels covered with porous polyurethane foam. Combustion and Plasma Chemistry, 19(2), 79–91. Retrieved from https://cpc-journal.kz/index.php/cpcj/article/view/122

Most read articles by the same author(s)