Promising methods for hydrogen producing

Authors

  • G.E. Ergazieva The Institute of Combustion Problems, Bogenbaybatyr str.172, 050012, Almaty, Kazakhstan; al-Farabi Kazakh National University, al-Farabi av. 71, 050040, Almaty, Kazakhstan
  • M.M. Telbayeva The Institute of Combustion Problems, Bogenbaybatyr str.172, 050012, Almaty, Kazakhstan; Kazakh state women’s teacher training university, Aiteke bi str. 99, 050000, Almaty, Kazakhstan
  • K. Dossumov The Institute of Combustion Problems, Bogenbaybatyr str.172, 050012, Almaty, Kazakhstan
  • A.I. Niyazbayeva al-Farabi Kazakh National University, al-Farabi av. 71, 050040, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc342

Keywords:

Hydrogen, methane, bioethanol, catalyst, conversion, raw materials, natural gas, green technology.

Abstract

Hydrogen production is one of the most promising ways to develop the energy sector of the future. Hydrogen does not exist in nature in its elemental form and therefore, it must be obtained from hydrocarbon, water or any other hydrogen-containing compounds. The variety of potential sources of raw materials for hydrogen production is one of the important reasons, in which hydrogen is such a promising energy carrier. The article describes methods for preparing the basic energy carrier, hydrogen from natural gas, ethanol etc. Among various types of raw materials, bioethanol is very attractive because of its relatively high hydrogen content, availability, as well as safety during storage and handling.

References

(1). http://www.venergetika.narod.ru

(2). Mordković V.Z., Sober A. Look at Hydrogen Energy // Chemistry and Life – 2006. No5. – P. 8-11.

(3). http://www.cleandex.ru

(4). http://www.fastmb.ru/testdrive/596-neobychnyy-sedan-toyota-mirai-2016.html

(5). You B., Sun Y. Innovative strategies for Electrocatalytic water splitting, Accounts of Chemical Research – 2018. – Vol. 51. – P. 1571–1580. https://doi.org/10.1021/acs.accounts.8b00002

(6). Baoxi Zhang, Shunyao Wang, Zhuo Ma, Yunfeng Qiu. Ni0-rich Ni/NiO nanocrystals for efficient water to hydrogen conversion via urea electro-oxidation // Applied Surface Science – 2019. – Vol. 496. – P.143710. https://doi.org/10.1016/j.apsusc.2019.143710

(7). Baykara S.Z. Experimental solar water thermolysis// International Journal of Hydrogen Energy – 2004. – Vol 29. – P. 1459-1469. https://doi.org/10.1016/j.ijhydene.2004.02.011

(8). Ершина А.К., Копенбаева А.С. Использование возобновляемых источников энергии – снижение парникового эффекта // Вестник Казахского государственного женского педагогического университета – 2016. – №4 (64). – С. 52-57.

(9). Zherlitsyn A.G., Shiyan V.P., Kositsyn V.S., MedvedevYu.V. Production of carbon nanomaterial and hydrogen under combined action of plasma of microwave discharge and metal catalyst on natural gas // Nanosystems, nanomaterials, nanotechnologies – 2011. – Vol. 9, No1. P. 167-174.

(10). Gerzeliev I.M., Popov A.Yu., Usachev N.Ya., Khadzhiev S.N. Application of the mathematical planning of the experiment in the partial oxidation of methane to synthesis gas by the lattice oxygen of a microspherical contactoxidant in the elevator reactor // Vestnik of Scientific and Technical Development – 2012. No (60). – P. 12-17.

(11). Toledo Camacho, Sandra Yurani, Rey, Ana, Hernández- Alonso, María Dolores, Llorca Jordi, Medina, Francisco, Contreras Sandra. Pd/TiO2-WO3 Photocatalysts for Hydrogen Generation from Water-Methanol Mixtures // Applied Surface Science – 2018. – Vol. 455. – P. 570-580. https://doi.org/10.1016/j.apsusc.2018.05.122

(12). FujishimaA, HondaK. TiO2 photoelectrochemistry and photocatalysis // Nature. – 1972. Vol.213. – P. 37-38.

(13). Chen X., Shen S., Guo L., Mao S.S. Semiconductorbased Photocatalytic Hydrogen Generation // Chemical Reviews (Washington, DC, United States). – 2010. – Vol. 110, No11. – P. 6503–6570. https://doi.org/10.1021/cr1001645

(14). Канцер В.Г., Мунтян С.П., Володина Г.Ф., Рудаков С.В. Фотокатализ воды и получение водорода// Элетронная обработка материалов. – 2009. – №4. – С. 108-112.

(15). Lei H., Zhang H., Zou Y., Dong X., Jia Y., Wang F.Synergetic photocatalysis/piezocatalysis of bismuth oxybromide for degradation of organic pollutants // Journal of Alloys and Compounds. – 2019. – Vol. 809. – P. 151840. https://doi.org/10.1016/j.jallcom.2019.151840

(16). F. Sultanov et.all. Aligned composite SrTiO3/PAN fibers as 1D photocatalyst obtained by electrospinning method// Chemical Physics Letters. – 2019. – Vol.737. – P. 136821. https://doi.org/10.1016/j.cplett.2019.136821

(17). Dosumov K., Ergazieva G.E., Churina D.K., Tel’baeva M.M. Cerium-containing catalysts for converting ethanol into ethylene //Russian Journal of Physical Chemistry A. – 2014. – Vol. 88, No10. – P. 1806-1808. https://doi.org/10.1134/S0036024414100094

(18). Tayrabekova S., Mäki-Arvela P., Peurla M., P Paturi, Eränen K. Catalytic dehydrogenation of ethanol into acetaldehyde and isobutanol using mono-and multicomponent copper catalysts // ComptesRendusChimie. – 2018. – Vol.21 (3-4). – P. 194-209. https://doi.org/10.1016/j.crci.2017.05.005

(19). Dossumov K., Yergazieva G.Y., Churina D.H., Tayrabekova S.Z. Effect of the Method of Preparation of a Supported Cerium Oxide Catalyst on its Activity in the Conversion of Ethanol to Ethylene// Theoretical and Experimental Chemistry. – 2016. – Vol. 52 (2). – P. 123-126. https://doi.org/10.1007/s11237-016-9460-z

(20). Reddi K., Elgowainy A., Rustagi N., Gupta E. Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen // International Journal of Hydrogen Energy – 2017. – Vol. 122. – P.1-11. https://doi.org/10.1016/j.ijhydene.2017.05.122

(21). Kozin L.F., Volkov S.V. Hydrogen Energy and Ecology. Naukova Dumka. Kiev, 2002. – 336 p.

(22). Qinhui Wang. Hydrogen Production // Handbook of Climate Change Mitigation and Adaptation – 2016. – Р. 2995-3037. https://doi.org/10.1007/978-3-319-14409-2_29

(23). Jie Lian, Xiuzhong Fang, Wenming Liu, Qian Huang, Qikai Sun, Hongming Wang, Xiang Wang, Wufeng Zhou. Ni Supported on LaFeO3 Perovskites for Methane Steam Reforming: On the Promotional Effects of Plasma Treatment in H2–Ar Atmosphere // Topics in Catalysis – 2017. – Vol. 60, I.12–14. – P. 831-842. https://doi.org/10.1007/s11244-017-0748-6

(24). Dossumov K., Churina D.Kh., Yergaziyeva G.Y., Telbayeva M.M., Tayrabekova S.Zh. Conversion of bio-ethanol over zeolites and oxide catalysts // International Journal of Chemical Engineering and Applications – 2016. – Vol. 7, No. 2. – P. 128-132. https://doi.org/10.7763/IJCEA.2016.V7.556

(25). Nazarbayev N. Global Energy Strategy for Sustainable Development in the 21st Century. Astana - Moscow. Izd. «Economy» – 2011. – P. 194.

(26). Lisiane V. Mattos, Gary Jacobs, Burtron H. Davis, and Fá bio B. Noronha. Production of Hydrogen from Ethanol: Review of Reaction. Mechanism and Catalyst Deactivation // Chemical Reviews – 2012. – Vol. 112. – Р. 4094-4123. https://doi.org/10.1021/cr2000114

(27). Kugai J, Subramani V, Song C, Engelhard MH, Chin YH. Effects of nanocrystalline CeO2 supports on the properties and performance of Ni–Rh bimetallic catalyst for oxidative steam reforming of ethanol. Journal of Catalysis. – 2006. Vol. – 238. – Р. 430. https://doi.org/10.1016/j.jcat.2006.01.001

(28). A.M. Da Silva, et al., The effect of support reducibility on the stability of Co/CeO2 for the oxidative steam reforming of ethanol // CatalysisToday. – 2011. – Vol. 164 (1). – Р. 234–239. https://doi.org/10.1016/j.cattod.2010.10.033

(29). G. Sun, et al. A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts, AppliedCatalysis B Environ. – 2008. –Vol. 81 (3–4). – Р.303–312. https://doi.org/10.1016/j.apcatb.2007.12.021

(30). X. Han, et al., Oxidative steam reforming of ethanol over Rh catalyst supported on Ce1− xLaxOy (x=0.3) solid solution prepared by urea co-precipitation method // Journal Power Sources. – 2013. – Vol. 238. – Р. 57–64. https://doi.org/10.1016/j.jpowsour.2013.03.032

Published

2020-03-28

How to Cite

Ergazieva, G., Telbayeva, M., Dossumov, K., & Niyazbayeva, A. (2020). Promising methods for hydrogen producing. Combustion and Plasma Chemistry, 18(1), 23–28. https://doi.org/10.18321/cpc342