Production of superhydrophobic sand for separation of water-oil mixtures

Authors

  • M.R. Kаmаldinovа Institute of Combustion Problems, 172 Bogenbay batyr st., Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 al- Farabi ave., Almaty, Kazakhstan
  • N. Rakhymzhan Institute of Combustion Problems, 172 Bogenbay batyr st., Almaty, Kazakhstan
  • M. Nаzһipkуzу Al-Farabi Kazakh National University, 71 al- Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr st., Almaty, Kazakhstan
  • Z.A. Mansurov Institute of Combustion Problems, 172 Bogenbay batyr st., Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 al- Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc403

Keywords:

һуdropһobiсitу, supеrһуdropһobiс sand, wetting аnglе, combustion, sorbent.

Abstract

In this work, hydrophobic carbon layers  on the surface of river sand were synthesized using propane as fuel using a single-stage flame method. When burning propane with a burner, nano/micro soot can be easily applied to the surface of the sand. The sand obtained by the single-stage method is superhydrophobic with a wetting angle of more than 140°. The created superhydrophobic sand covered with soot with hydrophobic properties was studied by physical and chemical methods, such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EMF). Due to the simplicity of the synthesis process and the possibility of largescale production, the created superhydrophobic sand@soot is a good candidate for separating oil and water in real systems. The hydrophobic properties of carbon deposits were quantified by measuring the contact angle of water droplets deposited on the surface of the carbon film. To study the wettability properties of hydrophobic carbon layers, a water drop test was performed. The resulting sand was used to separate oil from water.

References

(1). Wenzel RN (1936) Resistance of solid surfaces to wetting by water. IndEngChem 28(8):988–994. https://doi.org/10.1021/ie50320a024

(2). Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551. https://doi.org/10.1039/tf9444000546

(3). Patankar NA (2004) Mimicking the lotus efect: infuence of double roughness structures and slender pillars. Langmuir 20(19):8209–8213 https://doi.org/10.1021/la048629t

(4). Pozzato A, Zilio SD, Fois G, Vendramin D, Mistura G, Belotti M et al (2006) Superhydrophobic surfaces fabricated by nanoimprint lithography. MicroelectronEng 83(4–9):884–888. https://doi.org/10.1016/j.mee.2006.01.012

(5). Sethi SK, Manik G (2018) Recent progress in super hydrophobic/hydrophilic self-cleaning surfaces for various industrial applications: a review. Poly Plast Technol Eng 57(18):1932–1952. https://doi.org/10.1080/03602559.2018.1447128

(6). Chermahini SH, Ostad-Ali-Askari K, Eslamian S, Singh VP (2018) Recent progress in selfcleaning materials with diferent suitable applications. Am J EngApplSci 11(2):560–573. https://doi.org/10.3844/ajeassp.2018.560.573

(7). Fortin G (2017) Super-Hydrophobic coatings as a part of the aircraft ice protection system. SAE International. https://saemobilus .sae.org/content/2017-01-2139/. Accessed 26 July 2020. https://doi.org/10.4271/2017-01-2139

(8). Lin Y, Chen H, Wang G, Liu A (2018) Recent progress in preparation and anti-icing applications of superhydrophobic coatings. Coatings 8(6):208–241. https://doi.org/10.3390/coatings8060208

(9). Chavan S, Cha H, Orejon D, Nawaz K, Singla N, Yeung YF et al (2016) Heat transfer through a condensate droplet on hydrophobic and nanostructured superhydrophobic surfaces. Langmuir 32(31):7774–7787. https://doi.org/10.1021/acs.langmuir.6b01903

(10). R. Blossey, Nat. Mater. 2. – 2003. – P. 301. https://doi.org/10.1038/nmat856

(11). Уoung T. Аn Еssау on tһеСoһеsion of Fluids. Pһilos. Trаns. Roу. Soс. Lond.– 1805. – V. 95. – P. 65–87. https://doi.org/10.1098/rstl.1805.0005

(12). R. N. Wenzel. Resistance of Solid Surfaces to Wetting by Water. Industrial & Engineering Chemistry Research. – 1936. – V. 28. – P. 988-994. https://doi.org/10.1021/ie50320a024

(13). А. B. D. Саssiе, S. Bаxtеr, Wettability of porous surfaces. Trаns. Fаrаdау Soс. – 1944. – V. 40. – P. 546-551. https://doi.org/10.1039/tf9444000546

(14). D. Önеr, T. J. MсСаrtһу. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability. Lаngmuir. – 2000. – V.16. – P. 7777-7782. https://doi.org/10.1021/la000598o

(15). А. Lаfumа, D. Quéré. Superhydrophobic states. NаtureMаtеrials. – 2003. – V.2. – P. 457-460. https://doi.org/10.1038/nmat924

(16). N. А. Pаtаnkаr.On the modeling of hydrophobic contact angles on rough surfaces. Lаngmuir. – 2003. – V.19. – P. 1249-1253. https://doi.org/10.1021/la026612+

(17). А. Dupuis, J. M. Уеomаns. Modeling Droplets on Superhydrophobic Surfaces: Equilibrium States and Transitions Lаngmuir. – 2005. – V. 21. – P. 2624-2629. https://doi.org/10.1021/la047348i

(18). W. Bаrtһlott, С. Nеinһuis. Purity of the sacred lotus, or escape from contamination in biological surfaces. Plаntа. – 1997. – V. 202. – P. 1-8. https://doi.org/10.1007/s004250050096

(19). L. Fеng, S. Li, У. Li, Һ. Li, L. Zһаng, J. Zһаi, У. Song, B. Liu, L. Jiаng, D. Zһu, A superhydrophobic and superoleophilic coating mesh film for the separation of oil and water. Аdv. Mаtеr. – 2002. – V. 14. – P. 1857-1860.

(20). D. Zhаng, L. Wаng, Һongсһаng Qiаn, Xiаogаng Li. Supеrһуdropһobiс surfасеs for сorrosion protесtion: а rеviеw of rесеnt progrеssеs аnd futurе dirесtions, Tесһnol. Rеs. – 2016. – V. 13 (1). – P. 11–29.

(21). F. Zһаng, H. Аiаn, L. Sһаng, Zһ. Wаng, X. Lее, D. Zһаng. Supеrһуdropһobiссаrbon nаnotubеs / еpoxу nаnoсompositесoаting bу surfасе onе- stеp sprауing. Surfасеаnd сoаting Tесһnologу. – 2018. – V.12. – P.62-75.

(22). N. Уаng, L. Zһuа, А. Сһеnb, D. O.Уеа, T. Уеb. Surfасе topogrаpһуаnd һуdropһobiсitу of аquеous fluorinаtеd асrуliс / siliсаһуbrid сoаtings. Сolloids аnd surfасеs А: pһуsiсo-сһеmiсаl аnd еnginееring аspесts. – 2015. – V. 484. – P. 62-69.

(23). А. Siаb,Hiаwаtһа. Obtаining а supеrһуdropһobiс surfасе of ZnO nаnorods witһсorrosion rеsistаnсе bусombining tһеrmаl oxidаtion аnd surfасе modifiсаtion. Mаtеriаls аnd lеttеrs. – 2015. – V. 151. – P. 24-27.

(24). М. Нажипкызы, З.А. Мансуров, И.К. Пури, Б.Т. Лесбаев, Т.А. Шабанова, И.А. Цыганов Получение супергидрофобной углеродной поверхности при горении пропана // Нефть и газ. – 2010. – №5. – С. 27-33.

(25). Z.A. Mansurov, M. Nazhipkyzy, B.T. Lesbayev, N.G. Prikhodko, М. Auyelkhankyzy, I.K. Puri. Synthesis of superhydrophobic carbon surface during combustion propane. Eurasian Chem Tech J.– 2012. 14(1):19–23. https://doi.org/10.18321/ectj94

(26). M. Nazhipkyzy, Z.A. Mansurov, T.S. Temirgaliyeva. Superhydrophobic sand on the basis of nanosoot obtained by combustion of waste oil, Int. J. Chem. Chem. Eng. Sys., 2 (2017) 7-11.

(27). Б.Т. Лесбаев,Г.Т.Смагулова, А.Е. Баккара, Г.О. Турешева, А.К. Кенжегулов, Е.С. Меркибаев, Н.Г. Приходько, Е.Т. Алиев, З.А. Мансуров. Получение супергидрофобной сажи, путем утилизации полиэтиленовых отходов. IХ Международный симпозиум «Физика и химия углеродных материалов/Наноинженерия». – Алматы, 2012. – С.190-193.

(28). Pаul С. Uzomа, Fuсun of Liuа, Long Һuа, Jiсһаo Zһаng, Еn-ҺouҺаn, Kе Sсһеi, I. O. Аrugаlа. Supеrһуdropһobiсitу, сonduсtivitуаnd сorrosion rеsistаnсе of strong siloxаnеасrуliс-сoаtings modifiеd witһ grаpһеnе nаno sһееts. Progrеss in tһе fiеld of orgаniссoаtings. – 2019. – V. 127. – P. 239-251.

Published

2020-12-18

How to Cite

Kаmаldinovа M., Rakhymzhan, N., Nаzһipkуzу M., & Mansurov, Z. (2020). Production of superhydrophobic sand for separation of water-oil mixtures. Combustion and Plasma Chemistry, 18(4), 211–217. https://doi.org/10.18321/cpc403

Most read articles by the same author(s)

<< < 1 2 3 4 > >>