Super hydrophobic materials and coatings: overview
DOI:
https://doi.org/10.18321/cpc393Keywords:
cупергидрофобная поверхность, супергидрофобный текстиль, водоотталкивание, сажа.Abstract
This article describes the latest advances in superhydrophobic surfaces. The main idea of obtaining superhydrophobic surfaces is to create irregularities in the micronanosurface with a change in the chemical composition to increase the surface tension of water on the contact surface. The proposed review consists of eight sections, such as: obtaining hydrophobic nanostructures in a flame; obtaining hydrophobic sand; anti-icing; transparent and anti-reflective superhydrophobic coatings; decrease in hydraulic resistance; the use of batteries and fuel cells; superhydrophobic diatomaceous earth; superhydrophobic textiles. The growing interest in self-cleaning coatings is due to their low maintenance cost, high durability, and enormous application potential. Such coatings, for example, can provide useful resistance to clogging, icing, smudging, corrosion and have the ability to separate water from oil. Superhydrophobic surfaces attract the attention of scientists and engineers due to their exceptional water repellency. Consequently, the development and creation of self-cleaning materials is of considerable interest to researchers around the world.
References
(1). Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994. https://doi.org/10.1021/ie50320a024
(2). Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551. https://doi.org/10.1039/tf9444000546
(3). Patankar NA (2004) Mimicking the lotus efect: infuence of double roughness structures and slender pillars. Langmuir 20(19):8209–8213. https://doi.org/10.1021/la048629t
(4). Pozzato A, Zilio SD, Fois G, Vendramin D, Mistura G, Belotti M et al (2006) Superhydrophobic surfaces fabricated by nanoimprint lithography. Microelectron Eng 83(4–9):884–888. https://doi.org/10.1016/j.mee.2006.01.012
(5). Sethi SK, Manik G (2018) Recent progress in super hydrophobic/hydrophilic selfcleaning surfaces for various industrial applications: a review. Poly Plast Technol Eng 57(18):1932–1952. https://doi.org/10.1080/03602559.2018.1447128
(6). Chermahini SH, Ostad-Ali-Askari K, Eslamian S, Singh VP (2018) Recent progress in selfcleaning materials with diferent suitable applications. Am J Eng Appl Sci 11(2):560–573. https://doi.org/10.3844/ajeassp.2018.560.573
(7). Fortin G (2017) Super-Hydrophobic coatings as a part of the aircraft ice protection system. SAE International. https://saemobilus.sae. org/content/2017-01-2139/. Accessed 26 July 2020. https://doi.org/10.4271/2017-01-2139
(8). Lin Y, Chen H, Wang G, Liu A (2018) Recent progress in preparation and anti-icing applications of superhydrophobic coatings. Coatings 8(6):208–241. https://doi.org/10.3390/coatings8060208
(9). Гуляев И.П., Кузьмин В.И., Ковалев О.Б. Высокогидрофобные керамические покрытия, получаемые методом плазменного напыления порошковых материалов. Теплофизика и аэромеханика, 2020, Т.27, №4.
(10). Duncan Merchan Breuer, Ethan Murphy, Benjamin Berka, Elena Echeverria, · David N. McIlroy, · Wilson Merchan Merchan. Biodiesel fames as a unique pyrolyzing carbon source for the synthesis of hydrophobic carbon flms. Carbon Letters. – P.1-16. https://doi.org/10.1007/s42823-020-00168-4
(11). Фролов Ю. Г., Курс коллоидной химии. – M., 1982.
(12). Комиссаров А. В. В статье использованы материалы из портала «NANO NEWS NET». http://www.nanonewsnet.ru
(13). Hsieh C.T., Chen J.M., Kuo R.R. Influence roughness on water and oil-repellent surfaces coated with nanoparticles //Applied Surface Science. – 2005. – Vol. 240. – P.318-326. https://doi.org/10.1016/j.apsusc.2004.07.016
(14). http://archive.fo/iZoi2
(15). Homann K. H., Wagner H. G. Some aspects of soot formation // Dynamics of Exothermicity / ed. J. Ray Bawen. Combust. Sc. Technol. Book Series // Carbon and Breach Publishers. – 1996. – Vol. 2. – P.151-184.
(16). Мансуров З.А. Сажеобразование в процессах горения (обзор) // Физика горения и взрыва. – 2005. – Т. 41, № 6. – C.137-156.
(17). Robertson J. Diamond-like amorphous carbon // Mater Sci Eng R – 2002. Vol. 37(4–6) – Р.129-281. https://doi.org/10.1016/S0927-796X(02)00005-0
(18). Naha S., Sen S., Puri IK. Flame synthesis of superhydrophobic amorphous carbon surfaces // Carbon. – 2007. – Vol.45 – Р.1696- 1716. https://doi.org/10.1016/j.carbon.2007.04.018
(19). Levesque A., Binh V.T., Semet V., Guillot D., Fillit R.Y., Brookes M.D., et al. Mono disperse carbon nanopearls in a foam-like arrangement: a new carbon nano-compound for cold cathodes // Thin Solid Films. – 2004. – № 464–465. – Р.308-314. https://doi.org/10.1016/j.tsf.2004.06.012
(20). Sen S., Puri I.K. Flame synthesis of carbon nanofibers and nanofiber composites containing encapsulated metal particles // Nanotechnology. – 2004. – №15(3) – Р.264-268. https://doi.org/10.1088/0957-4484/15/3/005
(21). Zhou Y., Wang B., Song X., Li E., Li G., Zhao S., Yan H. Control over the wettability of amorphous carbon films in a large range from hydrophilicity to super-hydrophobicity //Applied Surfase Science. – 2006. – № 253(5). – Р.2690-2694. https://doi.org/10.1016/j.apsusc.2006.05.118
(22). Mazumdera S., Ghoshb S., Puri I.K. Nonpremixed Flame Synthesis of Hydrophobic Carbon Nanostructured Surfaces // Virginia 24061. – USA. – 14 p.
(23). Smagulova G.T., Nazhipkyzy M., Lesbayev B.T., Bakkara A.E., Prikhod’ko N.G., Mansurov Z.A. Influence of the Type of Catalysts on the Formation of a Superhydrophobic Carbon Nanomaterial in Hydrocarbon Flames. Journal of Engineering Physics and Thermophysics. – 2018. – Vol. 91, № 3. – Р.774-783. https://doi.org/10.1007/s10891-018-1800-5
(24). Zhou Y., Wang B., Song X., Li E., Li G., Zhao S., Yan H. Control over the wettability of amorphous carbon films in a large range from hydrophilicity to super-hydrophobicity //Applied Surfaсe Science. – 2006. – № 253(5). – Р.2690-2694. https://doi.org/10.1016/j.apsusc.2006.05.118
(25). Chao-Hua Xue, Shun-Tian Jia, Hong-Zheng Chen and MangWang. Superhydrophobic cotton fabrics prepared by sol gel coating of TiO2 and surface hydrophobization // Sci. Technol. Adv. Mater. 9. – 2008. 035001 (5pp). – P.1-5. https://doi.org/10.1088/1468-6996/9/3/035001
(26). Нажипкызы М., Мансуров З.А., Пури И.К., Лесбаев Б.Т., Шабанова Т.А., Цыганов И.А. Получение супергидрофобной углерод- ной поверхности при горении пропана // Нефть и газ. – 2010. – №5. – С. 27-33.
(27). Mansurov Z.A., Nazhipkyzy M., Lesbayev B.T., Prikhodko N.G., Auyelkhankyzy M., Puri I.K. (2012) Synthesis of superhydrophobic carbon surface during combustion propane. Eurasian Chem Tech J 14(1):19–23. https://doi.org/10.18321/ectj94
(28). Nazhipkyzy M., Lesbayev B.T., Mansurov Z.A., Arapova A.K., Baidaulova D.K., Solovyova M.G., Prikhodko N.G. Creation based on superhydrophobic soot waterproofing materials obtained in flames. Advanced Materials Research. – 2012. – Vol. 535-537. – Р.1437-1440. https://doi.org/10.4028/www.scientific.net/AMR.535-537.1437
(29). Нажипкызы М., Турганбай А. Получение гидрофобных покрытий. Химия и химическая технология. Современные проблемы: сборник обзорных статей ученых-химиков/под общей ред.проф. З.А. Мансурова. – Алматы: Қазақ университеті, 2020. – Вып. 6. – 335 с. ISBN 978-601- 04-3622-0.
(30). B. Lesbayev, M. Nazhipkyzy, N. Prikhodko, M. Solovyova, G. Smagulova, G. Turesheva, M. Auyelkhankyzy, T. Mashan, Z. Mansurov, Hydrophobic Sand on the Basis of Superhydrophobic Soot Synthesized in the Flame, Journal of Materials Science and Chemical Engineering, 2 (2014) 63. https://doi.org/10.4236/msce.2014.21011
(31). M. Nazhipkyzy, Z.A. Mansurov, T.S. Temirgaliyeva. Superhydrophobic sand on the basis of nanosoot obtained by combustion of waste oil, Int. J. Chem. Chem. Eng. Sys., 2 (2017) 7-11.
(32). Elham Mosayebi1, Saeid Azizian, Byeong Jun Cha, Tae Gyun Woo, Young Dok Kim. Fabrication of highly hydrophobic sand@ soot with core-shell structure and large scale production possibility for oil/water separation. Journal of Physics and Chemistry of Solids. – 2020. P.1-30.
(33). Nazhipkyzy M., Mansurov Z.A., Amirfazli A.A., Esbosin A., Temirgaliyeva T.S., Aliyev Е.T., and Prikhodko N.G. Influence of superhydrophobic properties on deicing. Journal of engineering physics and thermophysics. V. 89. № 6. 2016. P.1498-1503. https://doi.org/10.1007/s10891-016-1516-3
(34). Antonini C., Innocenti M., Horn T., Marengo M., Amirfazli A. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Regions Science and Technology 67. 2011. P.58–67. doi:10.1016/j.coldregions. 2011.02.006. https://doi.org/10.1016/j.coldregions.2011.02.006
(35). Tomabechi T., Takakura M., Ito T. Influence of the Surface Roughness of Roofing Materials on Snow Sliding. J. Snow Eng. Japan 1996, 12(3), 205–211. https://doi.org/10.4106/jsse.12.205
(36). Tripathi D., Jones F. R. Single Fibre Fragmentation Test for Assessing Adhesion in Fibre Reinforced Composites. J. Mater. Sci. 1998, 33(1) 1–16.
(37). Kako T., Nakajima A., Irie H., Kato Z., Uematsu K., Watanabe T., Hashimoto K. Adhesion and Sliding of Wet Snow on a Super-Hydrophobic Surface with Hydrophilic Channels. J. Mater. Sci. 2004, 39(2) 547–555. https://doi.org/10.1023/B:JMSC.0000011510.92644.3f
(38). Cao L., Jones A. K., Sikka V. K., Wu J., Gao D. Anti-Icing Superhydrophobic Coatings. Langmuir 2009, 25(21) 12444–12448. https://doi.org/10.1021/la902882b
(39). Flores-Vivian I., Hejazi V., Kozhukhova M.I., Nosonovsky M., Sobolev K. Self- Assembling particle-siloxane coatings for superhydrophobic concrete. ACS Appl. Mater. Interfaces 2013, 5, 13284–13294. https://doi.org/10.1021/am404272v
(40). Ramachandran R., Kozhukhova M., Sobolev K., Nosonovsky M. Anti-Icing superhydrophobic surfaces: Controlling entropic molecular interactions to design novel icephobic concrete. Entropy 2016, 18, 132. https://doi.org/10.3390/e18040132
(41). Zhao Y., Liu Y., Liu Q., Guo W., Yang L., Ge D. Icephobicity studies of superhydrophobic coatings on concrete via spray method. Mater. Lett. 2018, 233, 263–266. https://doi.org/10.1016/j.matlet.2018.09.008
(42). Esmeryan K.D., Bressler A.H., Castano C.E., Fergusson C.P., Mohammadi R. Rational strategy for the atmospheric icing prevention based on chemically functionalized carbon soot coatings. Appl. Surf. Sci. 2016, 390, 452–460. https://doi.org/10.1016/j.apsusc.2016.08.101
(43). Esmeryan K.D., Castano C.E., Mohammadi R., Lazarov Y., Radeva E.I. Delayed condensation and frost formation on superhydrophobic carbon soot coatings by controlling the presence of hydrophilic active sites. J. Phys. D Appl. Phys. 2018, 51, 055302. https://doi.org/10.1088/1361-6463/aaa188
(44). She W., Wang X., Miao C. Biomimetic superhydrophobic surface of concrete: Topographic and chemical modification assembly by direct spray. Constr. Build. Mater. 2018, 181, 347–357. https://doi.org/10.1016/j.conbuildmat.2018.06.063
(45). A. Nakajima, K. Abe, K. Hashimoto and T. Watanabe, Thin Solid Films, 2000, 376, 140. https://doi.org/10.1016/S0040-6090(00)01417-6
(46). A. Nakajima, J. Ceram. Soc. Jpn., 2004, 112, 533. https://doi.org/10.2109/jcersj.112.533
(47). Y. Xu, W. H. Fan, Z. H. Li, D. Wu and Y. H. Sun, Appl. Opt., 2003, 42, 108. https://doi.org/10.1364/AO.42.000108
(48). G. R. J. Artus, S. Jung, J. Zimmermann, H. Gautschi, K. Marquardt and S. Seeger, Adv. Mater., 2006, 18, 2758. https://doi.org/10.1002/adma.200502030
(49). B. G. Prevo, E. W. Hon and O. D. Velev, J. Mater. Chem., 2007, 17, 791. https://doi.org/10.1039/B612734G
(50). Teshima K., Sugimura H., Inoue Y., Takai O., Takano A. Transparent Ultra Water-Repellent Poly (Ethylene Terephthalate) Substrates Fabricated by Oxygen Plasma Treatment and Subsequent Hydrophobic Coating. Appl. Surf. Sci. 2005, 244(1–4) 619–622. https://doi.org/10.1016/j.apsusc.2004.10.143
(51). Nakajima A., Fujishima A., Hashimoto K., Watanabe T. Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate. Adv. Mater. 1999, 11(16) 1365–1368. https://doi.org/10.1002/(SICI)1521-4095(199911)11:16<1365::AID-ADMA1365>3.0.CO;2-F
(52). Hozumi A., Takai O. Preparation of Ultra WaterRepellent Films by Microwave Plasma- Enhanced CVD. Thin Solid Films 1997, 303(1–2), 222–225. https://doi.org/10.1016/S0040-6090(97)00076-X
(53). Bravo J., Zhai L., Wu Z., Cohen R.E., Rubner M.F. Transparent Superhydrophobic Films Based on Silica Nanoparticles. Langmuir 2007, 23(13), 7293–7298. https://doi.org/10.1021/la070159q
(54). Shang Q., Zhou Y. Fabrication of transparent superhydrophobic porous silica coating for self-cleaning and anti-fogging. Ceram. Int. 2016, 42, 8706–8712. https://doi.org/10.1016/j.ceramint.2016.02.105
(55). Zuo Z., Gao J., Liao R., Zhao X., Yuan Y. A novel and facile way to fabricate transparent superhydrophobic film on glass with selfcleaning and stability. Mater. Lett. 2019, 239, 48–51. https://doi.org/10.1016/j.matlet.2018.12.059
(56). Saxena N., Paria S. Fractal pattern mediated superhydrophobic glass and metallic surfaces using PTFE particles: A generalized simple approach. New. J. Chem. 2019, 43, 8075–8084. https://doi.org/10.1039/C9NJ00620F
(57). Lin Y., Han J., Cai M., Liu W., Luo X., Zhang H., Zhong M. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability. J. Mater. Chem. A 2018, 6, 9049–9056. https://doi.org/10.1039/C8TA01965G
(58). Tengfei Xiang, Zhong Lv, Feifei Wei, Jian Liu, Wei Dong, Cheng Li, Yingxuan Zhao and Depeng Chen. Superhydrophobic Civil Engineering Materials: A Review from Recent Developments. Coatings. MDPI. 2019, 9, 753; doi:10.3390/coatings9110753. https://doi.org/10.3390/coatings9110753
(59). R. Truesdell, A. Mammoli, P. Vorobieff, F. van Swol and C. J. Brinker, Phys. Rev. Lett., 2006, 97, 044504. https://doi.org/10.1103/PhysRevLett.97.044504
(60). K. Watanabe, Yanuar and H. Udagawa, J. Fluid Mech., 1999, 381, 225. https://doi.org/10.1017/S0022112098003747
(61). J. Kim, C.-J. Kim, Proceedings of the IEEE Conference MEMS, Las Vegas, NV, IEEE, New York, 2002, 479.
(62). J. Ou, B. Perot and J. P. Rothstein, Phys. Fluids, 2004, 16, 4635. https://doi.org/10.1063/1.1812011
(63). J. Ou and J. P. Rothstein, Phys. Fluids, 2005, 17, 103606. 136 J. Davies, D. Maynes, B. W. Webb and B. Woolford, Phys. Fluids, 2006, 18, 087110 https://doi.org/10.1063/1.2336453
(64). J. Davies, D. Maynes, B. W. Webb and B. Woolford, Phys. Fluids, 2006, 18, 087110. https://doi.org/10.1063/1.2336453
(65). C. H. Choi, U. Ulmanella, J. Kim, C.-M. Ho and C.J. Kim, Phys. Fluids, 2006, 18, 087105. https://doi.org/10.1063/1.2337669
(66). K. Fukagata, N. Kasagi and P. Koumoutsakos. A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys. Fluids, 2006, 18, 051703. https://doi.org/10.1063/1.2205307
(67). A. Lifton, S. Simon and R. E. Frahm, AT&T Bell Lab. Tech. J., 2005, 10, 81. https://doi.org/10.1002/bltj.20105
(68). W. Li, X. Wang, Z. Chen, M. Waje and Y. Yan, Langmuir, 2005, 21, 9386 https://doi.org/10.1021/la051124y
(69). Zhang X., et al. Superhydrophobic surfaces: from structural control to functional application J. Mater. Chem. 18. 2008. Р.621-633. https://doi.org/10.1039/B711226B
(70). M. Ma, R. M. Hill, J. L. Lowery, S. V. Fridrikh and G. C. Rutledge, Langmuir, 2005, 21, 5549. https://doi.org/10.1021/la047064y
(71). M. Ma, Y. Mao, M. Gupta, K. K. Gleason and G. C. Rutledge, Macromolecules, 2005, 38, 9742. https://doi.org/10.1021/ma0511189
(72). K. Satoh and H. Nakazumi, J. Sol–Gel Sci. Technol., 2003, 27, 327. https://doi.org/10.1023/A:1024025104733
(73). S. Michielsen and H. J. Lee, Langmuir, 2007, 23, 6004. https://doi.org/10.1021/la063157z
(74). Nadeeka D. Tissera, Ruchira N. Wijesena, J. Rangana Perera, K.M. Nalin de Silva, Gehan A.J. Amaratunge Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating. Applied Surface Science. Vol.324, 2015, P. 455- 463. https://doi.org/10.1016/j.apsusc.2014.10.148