Synthesis and Kinetic Analysis of Thermal Decomposition of a Copper-Based Coordination Complex

Authors

  • A. Akinzhanova al-Farabi Kazakh National University, Al-Farabi ave., 71, Almaty, Kazakhstan
  • T.S. Atamanova Institute of Combustion Problems, Bogenbai Batyr st., 172, Almaty, Kazakhstan
  • Zh. Tauanov al-Farabi Kazakh National University, Al-Farabi ave., 71, Almaty, Kazakhstan
  • T.D. Makhsutov al-Farabi Kazakh National University, Al-Farabi ave., 71, Almaty, Kazakhstan; Institute of Combustion Problems, Bogenbai Batyr st., 172, Almaty, Kazakhstan
  • Y. Mussatay al-Farabi Kazakh National University, Al-Farabi ave., 71, Almaty, Kazakhstan
  • M.K. Atamanov Institute of Combustion Problems, Bogenbai Batyr st., 172, Almaty, Kazakhstan; Kazakh National Women’s Pedagogical University, Gogol st., 114, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc23(4)523-532

Keywords:

combustion, burning rate, coordination compounds, copper, thermal analysis

Abstract

This paper presents the results of the synthesis and study of the thermal decomposition of the tetraamminecopper(II) nitrate coordination complex (TACN). The morphological structure of the obtained crystals was examined using scanning electron microscopy (SEM). The crystallite sizes were analyzed with a diffractometer. The average crystallite size, calculated by the Debye-Scherrer formula for the most intense diffraction peak, was found to be 37 nm. According to thermogravimetric analysis (DTG), mass loss begins at approximately 170 °C, with the main decomposition occurring at 237 °C. Gas evolution is observed within the temperature range of 170-275 °C.

References

(1) F. Sevely, X. Liu, T. Wu, et al. Effect of process parameters on the properties of direct written gas-generating reactive layers, ACS Appl. Polym. Mater., 3 (2021) 3972–3980. Crossref

(2) A. Akhinzhanova, S. Sultahan, Z. Tauanov, et al. Preparation and evaluation of effective thermal decomposition of tetraamminecopper (II) nitrate carried by graphene oxide, Combust. Flame, 250 (2023) 112672. Crossref

(3) J.Y. Ahn, W.D. Kim, K. Cho, et al. Effect of metal oxide nanostructures on the explosive property of metastable intermolecular composite particles, Powder Technol., 211 (2011) 65–71. Crossref

(4) T.M. Southern, W.W. Wendlandt. The thermal decomposition of metal complexes—XX: Some amine copper (II) nitrate complexes, J. Inorg. Nucl. Chem., 32 (1970) 3783–3792. Crossref

(5) T. Armbruster, P. Simoncic, N. Döbelin, et al. Cu²⁺-acetate and Cu²⁺-ammine exchanged heulandite: a structural comparison, Micropor. Mesopor. Mater., 57 (2003) 121–131. Crossref

(6) T. Wu, F. Sevely, S. Pelloquin, S. Assié-Souleille, A. Estève, C. Rossi. Enhanced reactivity of copper complex-based reactive materials via mechanical milling, Combust. Flame, 233 (2021) 111598. Crossref

(7) N.V. Chukanov, S.N. Britvin, G. Möhn, et al. Shilovite, natural copper (II) tetrammine nitrate, a new mineral species, Mineral. Mag., 79 (2015) 613–623. Crossref

(8) M. Liszka-Skoczylas, E. Mikuli, J. Szklarzewicz, et al. Thermal behaviour, phase transition and molecular motions in Co(NH₃)₆(NO₃)₂, Thermochim. Acta, 496 (2009) 38–44. Crossref

(9) A. Eslami, S.G. Hosseini, V. Asadi. The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles, Prog. Org. Coatings, 65 (2009) 269–274. Crossref

(10) A. Migdał-Mikuli, E. Mikuli, R. Dziembaj, et al. Thermal decomposition of Mg(NH₃)₆(NO₃)₂, Ni(NH₃)₆(NO₃)₂ and Ni(ND₃)₆(NO₃)₂, Thermochim. Acta, 419 (1–2) (2004) 223–229. Crossref

(11) S. Mathew, C.G.R. Nair, K.N. Ninan. Thermal decomposition studies on amine complexes of copper (II) nitrate in solid state, Bull. Chem. Soc. Jpn., 64 (1991) 3207–3209. Crossref

(12) C. Rossi. Engineering of Al/CuO reactive multilayer thin films for tunable initiation and actuation, Propell. Explos. Pyrotech., 44 (2019) 94–108. Crossref

(13) M. Attwa, H. Tantawy, S. Elbasuney. Customized green energetic tetra (imidazole) copper (II) nitrate (Cu-Im) complex/ammonium nitrate co-crystal: A novel reactive halogen-free oxidizer with superior stability and decomposition kinetics, J. Inorg. Organomet. Polym. Mater., 34 (2024) 5229–5246. Crossref

(14) T. Wu, F. Sevely, S. Pelloquin, et al. Enhanced reactivity of copper complex based composites (Cu(NH₃)₄(NO₃)₂) in nanothermite formulations, Combust. Flame, 233 (2021) 111598. Crossref

(15) K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B, 6th ed. Hoboken, NJ: Wiley, 2009. Crossref

(16) G. Socrates. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd ed. Chichester: Wiley, 2001.

(17) F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann. Advanced Inorganic Chemistry. 6th ed. New York: Wiley, 1999.

Downloads

Published

2025-12-03

How to Cite

Akinzhanova, A., Atamanova, T., Tauanov, Z., Makhsutov, T., Mussatay, Y., & Atamanov, M. (2025). Synthesis and Kinetic Analysis of Thermal Decomposition of a Copper-Based Coordination Complex. Combustion and Plasma Chemistry, 23(4), 523-532. https://doi.org/10.18321/cpc23(4)523-532