TiO2 Nanosheet Based Photocatalysts with Oxygen Vacancies for Enhanced Hydrogen Evolution Reaction Activity: Synthesis and DFT Calculations

Authors

  • R.E. Beissenov Kazakh-British Technical University, Tole bi st., 59, Almaty, Kazakhstan; Institute of Combustion Problems, Bogenbay Batyr st., 172, Almaty, Kazakhstan
  • A.D. Kudaibergen Kazakh-British Technical University, Tole bi st., 59, Almaty, Kazakhstan; Institute of Combustion Problems, Bogenbay Batyr st., 172, Almaty, Kazakhstan; KazNRTU named after K.I. Satbayev, Satpayev st., 22, Almaty, Kazakhstan
  • B.P. Bazarbayev Kazakh-British Technical University, Tole bi st., 59, Almaty, Kazakhstan; Institute of Combustion Problems, Bogenbay Batyr st., 172, Almaty, Kazakhstan
  • E.E. Beissenova Kazakh-British Technical University, Tole bi st., 59, Almaty, Kazakhstan
  • Z.A. Mansurov Institute of Combustion Problems, Bogenbay Batyr st., 172, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc23(3)233-242

Keywords:

photocatalysis, TiO2, PEO, hydrothermal synthesis, DFT

Abstract

This work, we propose an efficient method for synthesizing TiO2 nanosheets on titanium foil via plasma electrolytic oxidation (PEO) followed by hydrothermal growth of nanostructures. Density functional theory (DFT) calculations were conducted to optimize the material’s electronic properties and enhance its activity in the photocatalytic hydrogen evolution reaction (HER) through Mo doping. The PEO method forms a porous TiO2 seed layer with strong adhesion to the substrate. On this basis, in a multi-stage process in situ nucleation of sodium titanate nanosheets occurs, followed by their transformation into TiO2 nanosheets with a high specific surface area. Oxygen vacancies formed in the anatase phase play a key role in the adsorption of oxygen-containing ions and the activation of photocatalytic processes. Furthermore, DFT modeling confirmed that Mo doping and surface modification resulted in a decrease in the band gap (from 2.67 to 2.4 eV) , which contributed to the improvement of the photocatalytic activity and stability of the system. The proposed approach represents a promising strategy for scalable synthesis of monolithic, nanostructured TiO2 photocatalysts with robust adhesion to titanium substrates.

References

(1) C. Anand, B. Chandraja, P. Nithiya, et al. Green hydrogen for a sustainable future: A review of production methods, innovations, and applications, Int. J. Hydrogen Energy 111 (2025) 319–341. Crossref

(2) M.M. Hossain Bhuiyan, Z. Siddique. Hydrogen as an alternative fuel: A comprehensive review of challenges and opportunities in production, storage, and transportation, Int. J. Hydrogen Energy 102 (2025) 1026–1044. Crossref

(3) B. Abhishek, J. Arasalike, A.S. Rao, et al. Challenges in photocatalytic hydrogen evolution: Importance of photocatalysts and photocatalytic reactors, Int. J. Hydrogen Energy 81 (2024) 1442–1466. Crossref

(4) J. Zhou, Y. Tian, H. Gu, et al. Photocatalytic hydrogen evolution: Recent advances in materials, modifications, and photothermal synergy, Int. J. Hydrogen Energy 115 (2025) 113–130. Crossref

(5) S. Cao, W. Huang, S. Zhang, et al. A simple strategy to increase the interfacial adhesion between TiO2 nanotube layer and Ti substrate, J. Alloys Compd. 772 (2019) 173–177. Crossref

(6) M. Zhao, J. Li, Y. Li, et al. Gradient control of the adhesive force between Ti/TiO2 nanotubular arrays fabricated by anodization, Sci. Rep. 4 (2014) 7178. Crossref

(7) I.P. Torres-Avila, R.M. Souza, A. Chino-Ulloa, et al. Effect of anodization time on the adhesion strength of titanium nanotubes obtained on the surface of the Ti-6Al-4V alloy by anodic oxidation, Crystals 13 (2023) 1059. Crossref

(8) G.C. Cardoso, C.R. Grandini, J.V. Rau. Comprehensive review of PEO coatings on titanium alloys for biomedical implants, J. Mater. Res. Technol. 31 (2024) 311–328. Crossref

(9) A.G. McCarroll, P.L. Menezes. Modern innovations and applications in plasma electrolytic oxidation coatings on aluminum magnesium, and titanium, Coatings 15 (2025) 592. Crossref

(10) R.R. Lucas, R.C.M. Sales-Contini, F.J.G. da Silva, et al. Plasma electrolytic oxidation (PEO): An alternative to conventional anodization process, AIMS Mater. Sci. 11 (2024) 684–711. Crossref

(11) W. Lu, W. Yang, H. Zhang, et al. Oxygenvacancy-engineered MoTiO electrode boosting the exceptional catalytic activity for hydrogen evolution, Int. J. Hydrogen Energy 138 (2025) 423–433. Crossref

(12) P. Karuppasamy, N. Ramzan Nilofar Nisha, A. Pugazhendhi, et al. An investigation of transition metal doped TiO2 photocatalysts for the enhanced photocatalytic decoloration of methylene blue dye under visible light irradiation, J. Environ. Chem. Eng. 9 (2021) 105254. Crossref

(13) M. Sultana, A. Mondal, S. Islam, et al. Strategic development of metal doped TiO2 photocatalysts for enhanced dye degradation activity under UV-Vis irradiation: A review, Curr. Res. Green Sustain. Chem. 7 (2023) 100383. Crossref

(14) J. Huang, X. Guo, B. Wang, et al. Synthesis and photocatalytic activity of Mo-doped TiO2 nanoparticles, J. Spectrosc. (2015) 681850. Crossref

(15) M. Meftahi, S.H. Jafari, M. Habibi-Rezaei. Fabrication of Mo-doped TiO2 nanotube arrays photocatalysts: The effect of Mo dopant addition time to an aqueous electrolyte on the structure and photocatalytic activity, Ceram. Int. 49 (2023) 11411–11422. Crossref

(16) H. Khan, M. Khan, Y. Iqbal, et al. Molybdenum-doped TiO2 nanoparticles for enhanced photocatalytic activity: A combined experimental and theoretical study, Results Opt. 21 (2025) 100850. Crossref

(17) D. Xiang, C. Han, J. Zhang, et al. Gap states assisted MoO3 nanobelt photodetector with wide spectrum response, Sci. Rep. 4 (2014) 4891. Crossref

(18) C. Cheng, A. Wang, M. Humayun, et al. Recent advances of oxygen vacancies in MoO3: Preparation and roles, Chem. Eng. J. 498 (2024) 155246. Crossref

(19) S. Du, F. Zhang. General applications of density functional theory in photocatalysis, Chin. J. Catal. 61 (2024) 1–36. Crossref

(20) C.H. Lin, J. Rohilla, H.H. Kuo, et al. Densityfunctional theory studies on photocatalysis and photoelectrocatalysis: Challenges and opportunities, Solar RRL 8 (2024) 2300948. Crossref

(21) A.D. Kudaibergen, Z.B. Kuspanov, A.N. Issadykov, et al. Synthesis, structure, and energetic characteristics of perovskite photocatalyst SrTiO3: An experimental and DFT study, Eurasian Chem. Technol. J. 25 (2023) 139–146. Crossref

(22) V. Kumaravel, S. Rhatigan, S. Mathew, et al. Mo doped TiO2: Impact on oxygen vacancies, anatase phase stability and photocatalytic activity, J. Phys. Mater. 3 (2020) 025008. Crossref

Downloads

Published

2025-10-17

How to Cite

Beissenov, R., Kudaibergen, A., Bazarbayev, B., Beissenova, E., & Mansurov, Z. (2025). TiO2 Nanosheet Based Photocatalysts with Oxygen Vacancies for Enhanced Hydrogen Evolution Reaction Activity: Synthesis and DFT Calculations. Combustion and Plasma Chemistry, 23(3), 233-242. https://doi.org/10.18321/cpc23(3)233-242