Технологии хранения водорода: достижения, проблемы и перспективы развития

Авторы

  • Б.Т. Лесбаев Институт проблем горения, ул. Богенбай батыра, 172, Алматы, Казахстан; Казахский национальный университет им. аль-Фараби, пр. аль-Фараби, 71, Алматы, Казахстан
  • Н.Б. Рахымжан Институт проблем горения, ул. Богенбай батыра, 172, Алматы, Казахстан
  • М. Ауельханкызы Институт проблем горения, ул. Богенбай батыра, 172, Алматы, Казахстан; Казахский национальный университет им. аль-Фараби, пр. аль-Фараби, 71, Алматы, Казахстан
  • Г.С. Устаева Институт проблем горения, ул. Богенбай батыра, 172, Алматы, Казахстан; Казахский национальный университет им. аль-Фараби, пр. аль-Фараби, 71, Алматы, Казахстан
  • А.Б. Толынбеков Институт проблем горения, ул. Богенбай батыра, 172, Алматы, Казахстан; Казахский национальный университет им. аль-Фараби, пр. аль-Фараби, 71, Алматы, Казахстан
  • А. Жамаш Институт проблем горения, ул. Богенбай батыра, 172, Алматы, Казахстан; Казахский национальный университет им. аль-Фараби, пр. аль-Фараби, 71, Алматы, Казахстан
  • Лю Ян Институт проблем горения, ул. Богенбай батыра, 172, Алматы, Казахстан; Казахский национальный университет им. аль-Фараби, пр. аль-Фараби, 71, Алматы, Казахстан
  • М. Нажипкызы Институт проблем горения, ул. Богенбай батыра, 172, Алматы, Казахстан; Казахский национальный университет им. аль-Фараби, пр. аль-Фараби, 71, Алматы, Казахстан

DOI:

https://doi.org/10.18321/cpc23(3)215-232

Ключевые слова:

хранение водорода, интерметаллиды, металлогидриды, нанопористый углерод, эффект «перетока» (spillover)

Аннотация

Водород рассматривается как один из наиболее перспективных энергоресурсов XXI века благодаря экологической чистоте и потенциалу интеграции в устойчивую энергетику. Основным препятствием на пути его широкого внедрения остается отсутствие эффективных и безопасных технологий хранения. В данной работе представлен обзор современных методов хранения: в виде сжатого газа, жидкого водорода, в металлогидридах и наноструктурированных материалах. Рассмотрены преимущества и ограничения традиционных технологий, показана перспективность нанопористого углерода, включая материалы из биомассы, обладающего высокой удельной поверхностью и возможностью функциональной модификации. Приведены экспериментальные данные, демонстрирующие достижение емкости свыше 10 мас.% при оптимальных условиях. Обоснована необходимость комплексного подхода к развитию водородной энергетики, включающего совершенствование существующих систем и применение устойчивых технологий на основе возобновляемого сырья.

Библиографические ссылки

(1) UNIDO. Global Programme for Hydrogen in Industry (GPHI), UNIDO Green Hydrogen, 2021. URL

(2) The Concept for the Development of Hydrogen Energy has been approved in Kazakhstan. URL

(3) International Energy Agency. The Future of Hydrogen. URL

(4) R. Zacharia, S.U. Rather. Review of solid state hydrogen storage methods adopting different kinds of novel materials, J. Nanomater. 2015 (2015) 914845. Crossref

(5) J.W. Ren, N.M. Musyoka, H.W. Langmi, et al. Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review, Int. J. Hydrogen Energy 42 (2017) 289–311. Crossref

(6) S. Bosu, N. Rajamohan. Recent advancements in hydrogen storage – Comparative review on methods, operating conditions and challenges, Int. J. Hydrogen Energy 52 (2024) 352–370. Crossref

(7) C. Daulbayev, A. Nurgaliyeva, S. Assanov, et al. A mini-review on recent trends in prospective use of porous 1D nanomaterials for hydrogen storage, S. Afr. J. Chem. Eng. 39 (2022) 52–61. Crossref

(8) Fateev, V. N., Alekseeva, O. K., Korobtsev, S. V., & Musaev, R. A. (2018). Problems of hydrogen accumulation and storage. Kimya Probl, 4. Retrieved from URL

(9) H. Barthélémy, M. Weber, F. Barbier. Hydrogen storage: Recent improvements and industrial perspectives, Int. J. Hydrogen Energy 42 (2017) 7254–7262. Crossref

(10) Q. Cheng, J. Xu, W. Wang, et al. Review of common hydrogen storage tanks and current manufacturing methods for aluminium alloy tank liners, Int. J. Lightweight Mater. Manuf. 7 (2024) 269–284. Crossref

(11) D. Chapelle, D. Perreux. Optimal design of a Type 3 hydrogen vessel: Part I — Analytic modelling of the cylindrical section, Int. J. Hydrogen Energy 31 (2006) 627–638. Crossref

(12) M.R. Usman. Hydrogen storage methods: Review and current status, Renew. Sustain. Energy Rev. 167 (2022) 112743. Crossref

(13) J. Wu, R. Wang, R. Liu, et al. The development status of composite materials and winding process of Type IV hydrogen storage cylinder, Int. J. Automot. Manuf. Mater. 4 (1) (2025) 4. Crossref

(14) D.I. Kis, E. Kokai. A review on the factors of liner collapse in type IV hydrogen storage vessels, Int. J. Hydrogen Energy 50 (2024) 236–253. Crossref

(15) A. Air, F. Ahmed, Y. Tang, et al. A review of Type V composite pressure vessels and automated fibre placement based manufacturing, Compos. Part B: Eng. 253 (2023) 110573. Crossref

(16) M. Jaber, Y. Liu, N. Al-Aqtash, et al. Burst pressure performance comparison of type V hydrogen tanks: Evaluating various shapes and materials, Int. J. Hydrogen Energy 81 (2024) 906–917. Crossref

(17 L. Yin, H. Yang, Y. Ju. Review on the key technologies and future development of insulation structure for liquid hydrogen storage tanks, Int. J. Hydrogen Energy 57 (2024) 1302–1315. Crossref

(18) Y. Qiu, W. Liu, Z. Huang, et al. Research progress of cryogenic materials for storage and transportation of liquid hydrogen, Metals 11 (2021) 1101. Crossref

(19) R. Morales-Ospino, A. Celzard, V. Fierro. Strategies to recover and minimize boil-off losses during liquid hydrogen storage, Renew. Sustain. Energy Rev. 182 (2023) 113360. Crossref

(20) J.B. Von Colbe, J.R. Ares, J. Barale, et al. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives, Int. J. Hydrogen Energy 44 (2019) 7780-7808. Crossref

(21) S.I. Orimo, Y. Nakamori, J.R. Eliseo, et al. Complex hydrides for hydrogen storage, Chem. Rev. 107 (2007) 4111-4132. Crossref

(22) W. Zhang, X. Zhang, Z. Huang, et al. Recent development of lithium borohydride-based materials for hydrogen storage, Adv. Energy Sustain. Res. 2 (2021) 2100073. Crossref

(23) P. Modi, K.F. Aguey-Zinsou. Room temperature metal hydrides for stationary and heat storage applications: A review, Front. Energy Res. 9 (2021) 616115. Crossref

(24) E.S. Kikkinides, M.C. Georgiadis, A.K. Stubos. Dynamic modelling and optimization of hydrogen storage in metal hydride beds, Energy 31 (2006) 2428-2446. Crossref

(25) J.O. Abe, A.P.I. Popoola, E. Ajenifuja, et al. Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrogen Energy 44 (2019) 15072-15086. Crossref

(26) C. Zhou, J. Zhang, R.C. Bowman Jr., et al. Roles of Ti-based catalysts on magnesium hydride and its hydrogen storage properties, Inorganics 9 (2021) 36. Crossref

(27) N.A.A. Rusman, M. Dahari. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications, Int. J. Hydrogen Energy 41 (2016) 12108-12126. Crossref

(28) K.S. Nivedhitha, T. Beena, N.R. Banapurmath, et al. Advances in hydrogen storage with metal hydrides: Mechanisms, materials, and challenges, Int. J. Hydrogen Energy 61 (2024) 1259-1273. Crossref

(29) R.A. Varin, Z. Zaranski, T. Czujko, et al. The composites of magnesium hydride and iron-titanium intermetallic, Int. J. Hydrogen Energy 36 (2011) 1177-1183. Crossref

(30) H. Chu, H. Li, S. Qiu, et al. High-efficiency hydrogen storage of magnesium hydride achieved by catalytic doping with zirconium titanate, J. Energy Storage 114 (2025) 115907. Crossref

(31) H. Xiao, L. Yi, H. Lei, et al. TiCrNb hydride fabricated by melt spinning as the efficient catalyst for enhancing the hydrogen storage properties of MgH2, J. Magnes. Alloys (2025). Crossref

(32) M. Ismail. Effect of adding different percentages of HfCl4 on the hydrogen storage properties of MgH2, Int. J. Hydrogen Energy 46 (2021) 8621-8628. Crossref

(33) H. Cai, B. Dou, L. Xue, et al. Engineering Ti–Cr–Mo-based alloys for hydrogen storage: Fe doping as a strategy for improved reversibility and stability, Int. J. Hydrogen Energy 128 (2025) 499–510. Crossref

(34) R. Li, H. Lu, X. Pan, et al. Improvement on cyclic stability of AB4-type La–Mg–Ni-based hydrogen storage alloys via merging Y element for nickel-metal hydride batteries, Int. J. Hydrogen Energy 48 (2023) 32849–32859. Crossref

(35) X. Zhang, J. Li, Y. Zhao, et al. Cycling decay mechanism of AB5-type hydrogen storage alloy for metal hydride hydrogen compressor, J. Rare Earths (2025). Crossref

(36) A. Schneemann, J.L. White, S.Y. Kang, et al. Nanostructured metal hydrides for hydrogen storage, Chem. Rev. 118 (2018) 10775-10839. Crossref

(37) E. Boateng, A. Chen. Recent advances in nanomaterial-based solid-state hydrogen storage, Mater. Today Adv. 6 (2020) 100022. Crossref

(38) V. Kudiiarov, J. Lyu, O. Semyonov, et al. Prospects of hybrid materials composed of MOFs and hydride-forming metal nanoparticles for light-duty vehicle hydrogen storage, Appl. Mater. Today 25 (2021) 101208. Crossref

(39) M. El Khatabi, M. Bhihi, S. Naji, et al. Study of doping effects with 3d and 4d-transition metals on the hydrogen storage properties of MgH2, Int. J. Hydrogen Energy 41 (2016) 4712-4718. Crossref

(40) J. Hu, W. Wang, L. Xie, et al. Effects of NH4+ doping on the hydrogen storage properties of metal hydrides, Int. J. Hydrogen Energy 48 (2023) 19153–19159. Crossref

(41) M. Ali, Z. Bibi, M.W. Younis, et al. Enhancement of hydrogen storage characteristics of Na2CaH4 hydrides by introducing the Mg and Be dopant: A first-principles study, Int. J. Hydrogen Energy 70 (2024) 579-590. Crossref

(42) I. Cabria, M.J. López, J.A. Alonso. The optimum average nanopore size for hydrogen storage in carbon nanoporous materials, Carbon 45 (2007) 2649-2658. Crossref

(43) Á. Berenguer-Murcia, J.P. Marco-Lozar, D. Cazorla-Amorós. Hydrogen storage in porous materials: Status, milestones, and challenges, Chem. Rec. 18 (2018) 900-912. Crossref

(44) P. Ramirez-Vidal, G. Sdanghi, A. Celzard, et al. High hydrogen release by cryo-adsorption and compression on porous materials, Int. J. Hydrogen Energy 47 (2022) 8892-8915. Crossref

(45) M. Mohan, V.K. Sharma, E.A. Kumar, et al. Hydrogen storage in carbon materials - A review, Energy Storage 1 (2019) e35. Crossref

(46) Z. Chen, K.O. Kirlikovali, K.B. Idrees, et al. Porous materials for hydrogen storage, Chem. 8 (2022) 693–716. Crossref

(47) Y. Wang, Y. Xue, A. Züttel. Nanoscale engineering of solid-state materials for boosting hydrogen storage, Chem. Soc. Rev. 53 (2024) 972–1003. Crossref

(48) L.A. Mahmoud, J.L. Rowlandson, D.J. Fermin, et al. Porous carbons: a class of nanomaterials for efficient adsorption-based hydrogen storage, RSC Appl. Interfaces (2025). Crossref

(49) V. Fierro, A. Szczurek, C. Zlotea, et al. Experimental evidence of an upper limit for hydrogen storage at 77 K on activated carbons, Carbon 48 (2010) 1902–1911. Crossref

(50) L. Schlapbach, A. Züttel. Hydrogen-storage materials for mobile applications, Nature 414 (2001) 353–358. Crossref

(51) S. Elyasi, S. Saha, N. Hameed, et al. Emerging trends in biomass-derived porous carbon materials for hydrogen storage, Int. J. Hydrogen Energy 62 (2024) 272–306. Crossref

(52) S. Stelitano, G. Conte, A. Policicchio, et al. Pinecone-derived activated carbons as an effective medium for hydrogen storage, Energies 13 (2020) 2237. Crossref

(53) A.I. Sultana, M.T. Reza. Investigation of hydrothermal carbonization and chemical activation process conditions on hydrogen storage in loblolly pine-derived superactivated hydrochars, Int. J. Hydrogen Energy 47 (2022) 26422–26434. Crossref

(54) M.M. Alam, M.A. Hossain, M.D. Hossain, et al. The potentiality of rice husk-derived activated carbon: From synthesis to application, Processes 8 (2020) 203. Crossref

(55) H. Chen, H. Wang, Z. Xue, et al. High hydrogen storage capacity of rice hull based porous carbon, Int. J. Hydrogen Energy 37 (2012) 18888–18894. Crossref

(56) K. Komatsu, H. Li, Y. Kanma, et al. Increase in H2 storage capacity of nanoporous carbon fabricated from waste rice husk via improving the mode of the reaction mixture cooling down, J. Mater. Res. Technol. 12 (2021) 1203–1211. Crossref

(57) B. Lesbayev, N. Rakhymzhan, G. Ustayeva, et al. Preparation of nanoporous carbon from rice husk with improved textural characteristics for hydrogen sorption, J. Compos. Sci. 8 (2024) 74. Crossref

(58) S. Cheng, X. Cheng, M.H. Tahir, et al. Synthesis of rice husk activated carbon by fermentation osmotic activation method for hydrogen storage at room temperature, Int. J. Hydrogen Energy 62 (2024) 443–450. Crossref

(59) L.F. Wang, R.T. Yang. Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover, Catal. Rev. 52 (2010) 411–461. Crossref

(60) T.Y. Chung, C.S. Tsao, H.P. Tseng, et al. Effects of oxygen functional groups on the enhancement of the hydrogen spillover of Pd-doped activated carbon, J. Colloid Interface Sci. 441 (2015) 98–105. Crossref

(61) V.B. Parambhath, R. Nagar, S. Ramaprabhu. Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene, Langmuir 28 (2012) 7826–7833. Crossref

(62) B.P. Vinayan, K. Sethupathi, S. Ramaprabhu. Facile synthesis of triangular shaped palladium nanoparticles decorated nitrogen doped graphene and their catalytic study for renewable energy applications, Int. J. Hydrogen Energy 38 (2013) 2240–2250. Crossref

(63) W. Zhao, L. Luo, T. Chen, et al. Synthesis and characterization of Pt-N-doped activated biocarbon composites for hydrogen storage, Compos. Part B: Eng. 161 (2019) 464–472. Crossref

Загрузки

Опубликован

17-10-2025

Как цитировать

Лесбаев, Б., Рахымжан, Н., Ауельханкызы, М., Устаева, Г., Толынбеков, А., Жамаш, А., Ян, Л., & Нажипкызы, М. (2025). Технологии хранения водорода: достижения, проблемы и перспективы развития. Горение и плазмохимия, 23(3), 215-232. https://doi.org/10.18321/cpc23(3)215-232