Study of helium cryoplasma by electro-physical and spectroscopic methods

Authors

  • H.G. Tarchouna University Grenoble Alpes, G2Elab, F 38000 Grenoble, France
  • N. Bonifaci University Grenoble Alpes, G2Elab, F 38000 Grenoble, France
  • F. Aitken University Grenoble Alpes, G2Elab, F 38000 Grenoble, France
  • V.A. Shakhatov A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky prospect 29, Moscow, 119991, Russia
  • V.M. Atrazhev Joint Institute for High Temperatures RAS, Moscow, Russia
  • J. Eloranta Department of Chemistry and Biochemistry, California State University, Northridge, USA
  • F. Jomni LabMOP, Campus Universitaire – El Manar, 2092, Tunis, Tunisia

DOI:

https://doi.org/10.18321/

Keywords:

corona discharge, plasma spectroscopy, characteristics, temperature

Abstract

The properties of corona discharge were study by electro-physical and spectral methods in the supercritical phase at 6 K, 11 K 150 K and 300 K as well as in normal liquid helium at 4.2 K within the pressure range of 0.1-10 MPa. The electro-physical investigations (measurement of corona current as a function of the applied voltage) gave information about the mobility of charged particles in the medium. The measured current-voltage characteristics allow for the calculation of the charged particle mobilities (i.e., electrons for negative corona and positive ions for positive corona). The observed charge mobilities decrease as a function of external pressure in both supercritical and liquid phases of helium. The light emitted from the ionization zone was analyzed and assigned to atomic and molecular lines. Spectral composition of the corona discharge strongly depends on temperature. The rotational distribution functions, determined from the distributions of transition intensities of the He2 (c3Σ+g-a3Σ+u) are differ from the Boltzmann distributions.

References

(1). Li Z., Bonifaci N., Aitken F., Denat A., Von Haeften K., Atrazhev V.M., Shakhatov V.A. // Eur. Phys. J. Appl. Phys. 2009. Vol. 47. P. 22821.

(2). Li Z., Bonifaci N., Denat A., Atrazhev V.M. // IEEE Trans. Dielectr. Electr. Insul. 2006. Vol. 13. P. 624.

(3). Fetter A.L. In: The Physics of Liquid and Solid Helium / Eds. Benneman K.H., Ketterson J.B. N.Y.: Wiley, 1976.

(4). Brown C., Ginter M. // J. Mol. Spectrosc. 1971. Vol. 5. P. 302.

(5). Ginter M.L. // J. Chem. Phys. 1965. Vol. 42. P. 561.

(6). Kafanov S.G., Parshin A.Ya., Todoshchenko I.A. // JETP. 2000. Vol. 91. P. 991.

(7). Yurgenson S., Hu C.C., Kim C., Northby J.A. // Eur. Phys. J. D. 1999. Vol. 9. P. 153.

(8). Callear A.B., Hedges R.E.M. // Nature. 1967. Vol. 215. P. 1267.

(9). Tokaryk D.W., Brooks R.L., Hunt J.L. // Phys. Rev. A. 1993. Vol. 48. P. 364.

Downloads

Published

2014-12-25

How to Cite

Tarchouna, H., Bonifaci, N., Aitken, F., Shakhatov, V., Atrazhev, V., Eloranta, J., & Jomni, F. (2014). Study of helium cryoplasma by electro-physical and spectroscopic methods. Combustion and Plasma Chemistry, 12(4), 222-228. https://doi.org/10.18321/