Oxidation heat effects of metal nanopowders after electron irradiation
DOI:
https://doi.org/10.18321/Keywords:
nanopowders, electron irradiation, thermal effect, crystalline structures, energetically condensed systemsAbstract
The nanopowders of iron, nickel, molybdenum and copper received by electric explosion of wire were irradiated by an electron current on the liner electron accelerator with the radiation doses of 1, 5 and 10 Mrad. The differential thermal and X-ray analyses were used to determine the effect of electron irradiation on metal nanopowders. Four parameters of activity of nanopowders were evaluated according to the differential thermal analysis: the initial temperature of oxidation, the completeness of oxidation, the maximum speed of metal oxidation and the thermal effect of oxidation. It was ascertained that the thermal effect of combustion increased after irradiation by 1.5-2.5 times. It was shown that the significant increase of the heat of combustion of nanopowders was caused by the increase of the internal stored energy as a result of the ionizing effect of electrons. The electrostatic model of surface charged structures of nanoparticles generated by the ionizing effect of electrons was offered, and its analogue is a spherical capacitor. This model makes it possible to estimate the increase of the surface energy of nanopowders by charging the spherical nanocapacitor with 110-1 100 kJ/mol. Studies conducted on the X-ray analyzer have shown that the lattice parameters of the initial and irradiated metal nanopowders are greater than those of the standard samples of massive metals. Irradiation of nanopowders by accelerated electrons furthers stabilization of interplanar spacings of crystal lattices and brings them closer the standard of massive metals.
References
(1). Gromov A.A., Förter-Barth U., Teipel U. Aluminum nanopowders produced by electrical explosion of wires and passivated by non-inert coatings: characterisation and reactivity with air and water // Powder Technology. – 2006. – № 164. – С. 111–115.
(2). Teipel U. Energetic Materials. – Weinheim: Wiley, 2004. – 643 p.
(3). Ягодников Д.А. Воспламенение и горение порошкообразных металлов. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2009. – 432 с.
(4). Ильин А.П. Об активности порошков алюминия // Физика горения и взрыва. – 2001. – Т. 37, № 4. – С. 58.
(5). Wu Y., Hao S., Yang Y., Wang M., Deng J. Electrical explosion of wires applying in nanometer materials preparation // Journal of Pulsed Power Applications. – 2010. – P. 505–507.
(6). Лернер М.И., Сваровская Н.В., Псахье С.Г., Бакина О.В. Технология получения, характеристики и некоторые области применения электровзрывных нанопорошков металлов // Российские нанотехнологии. – 2009. – Т. 4, № 11–12. – С. 56–68.
(7). Назаренко О.Б. Электровзрывные нанопорошки: получение, свойства, применение. – Томск: Изд-во ТГУ, 2005. – 148 с.
(8). Ильин А.П., Коршунов А.В., Толбанова Л.О. Структура, свойства и проблемы аттестации нанопорошков металлов // Известия Томского политехнического университета. – 2009. – Т. 314, № 3. – С. 35–40.
(9). Rutherford A.M., Duffy D.M. The effect of electron–ion interactions on radiation damage simulations // Journal of Physics: Condensed Matter. – 2007. – Vol. 19. – P. 1–9.
(10). Was G.S. Fundamentals of Radiation Materials Science. – Berlin: Springer, 2007. – 827 p. – ISBN 978-3-540-49471-3.
(11). Sickafus K.E., Kotomin E.A., Uberuaga B.P. Radiation Effects in Solids. – NATO Science Series, 2007. – 235 p.
(12). Rong M.Zh., Zhang M.Q., Wang H.B., Zeng H.M. Surface modification of magnetic metal nanoparticles through irradiation graft polymerization // Applied Surface Science. – 2002. – № 200. – P. 76–93.
(13). James F.H., Daniel N.S. Patent application title: Methods of enhancing radiation effects with metal nanoparticles. – NanoProbes, Inc. – Patent application number: 20090186060.
(14). Gromov A.A., Richardson H.H. Generating heat with metal nanoparticles // Nano Today. – 2007. – Vol. 2, № 1. – P. 30–38.
(15). Kurt E.S., Eugene A.K., Blas P.U. Radiation Effects in Solids. – NATO Science Series, 2007. – 235 p.
(16). Трайбус М. Термостатика и термодинамика. – М.: Энергия, 1970. – 501 с.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Е.Е. Дильмухамбетов, Т.И. Есполов, М.У. Оспанова, А.П. Ильин

This work is licensed under a Creative Commons Attribution 4.0 International License.


