Kinetic mechanism of combustion synthesis gas received by plasma gasification of solid fuel
DOI:
https://doi.org/10.18321/Keywords:
plasma, synthesis gas, kinetics, fuels, gasificationAbstract
The paper presents the scheme for producing synthesis gas by plasma gasification of solid fuels and detailed analysis of the existing literature on combustion synthesis gas (CO+H2). Analyzed and systematized the main known kinetic mechanisms of oxidation of synthesis gas. Chosen the experimental data used to test them and found the parameters of applicability of these mechanisms. Found and analyzed experimental data on ignition delay, flame spread rate and concentrations of components H2/CO/O2. For these data, the optimization of the kinetic parameters of the basic mechanism of oxidation reactions of synthesis gas. Modified values of reaction rate constants were thus in the interval error. The resulting kinetic mechanism of combustion synthesis gas is in good agreement with all approved to consider the source data. Developed kinetic mechanism of oxidation syngas will provide the required efficiency of its combustion and optimum design of the burners and the ability to create new processes, including control of the operating conditions of gas turbine, gas engine and steam turbines, as well as environmental pollution. The model used includes a mechanism of chemical transformations of fuel associated with the equations of heat and mass transfer, and involves the use of a kinetic model of the combustion synthesis gas that reliably reproduces the heat and ignition of the gas.
References
(1) Key World Energy Statistics. – International Energy Agency, 2012. – 80 p. – URL: www.iea.org
(2)Messerle V. E., Ustimenko A. B. Solid fuel plasma gasification // Advanced Combustion and Aerothermal Technologies / Eds. N. Syred, A. Khalatov. – Springer, 2007. – P. 141–156.
(3) Локвуд Ф. Ч., Мессерле В. Е., Умбеткалиев К. А., Устименко А. Б. Плазменная газификация высокозольных энергетических углей // Горение и плазмохимия. – 2008. – Т. 6, № 1. – С. 50–55.
(4) Мессерле В. Е., Устименко А. Б. Плазмохимические технологии переработки топлив // Известия вузов. Химия и химическая технология. – 2012. – Т. 55, вып. 4. – С. 30–34.
(5) Messerle V. E., Ustimenko A. B., Slavinskaya N. A., Riedel U. Influence of coal rank on the process of plasma aided gasification // ASME Turbo Expo 2012, Bella Center, Copenhagen, Denmark, June 11–15, 2012. – Final program, p. 39. – Proceedings No. GT2012-68701. – P. 1–10.
(6) Большова Т. А., Шмаков А. Г., Якимов С. А., Князьков Д. А., Коробейничев О. П. Сокращённый кинетический механизм горения синтез-газа при повышенных температурах и высоком давлении // Физика горения и взрыва. – 2012. – № 5. – С. 109–121.
(7) Старик А. М., Титова Н. С., Шарипов А. С. Детальные кинетические модели окисления водорода и синтез-газа в воздухе // Неравновесные физико-химические процессы в газовых потоках и новые принципы организации горения / под ред. А. М. Старика. – М.: Торус-Пресс, 2011. – С. 25–52.
(8) Старик А. М., Титова Н. С., Шарипов А. С. Теоретический анализ кинетики реакций в смесях CO–H₂–O₂ с участием электронно-возбуждённых молекул O₂ // Неравновесные физико-химические процессы в газовых потоках и новые принципы организации горения / под ред. А. М. Старика. – М.: Торус-Пресс, 2011. – С. 160–177.
(9) Yetter R. A., Dryer F. L., Rabitz H. A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics // Combustion Science and Technology. – 1991. – Vol. 79, № 1. – P. 97–128.
(10) Hughes K. J., Turanyi T., Clague A. R., Pilling M. J. Development and testing of a comprehensive chemical mechanism for the oxidation of methane // International Journal of Chemical Kinetics. – 2001. – Vol. 33. – P. 513–538.
(11) Zsély I. Gy., Zádor J., Turányi T. Uncertainty analysis of updated hydrogen and carbon monoxide oxidation mechanisms // Proceedings of the Combustion Institute. – 2005. – Vol. 30. – P. 1273–1281.
(12) Davis S. G., Joshi A. V., Wang H., Egolfopoulos F. An optimized kinetic model of H₂/CO combustion // Proceedings of the Combustion Institute. – 2005. – Vol. 30. – P. 1283–1292.
(13) Saxena P., Williams F. A. Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide // Combustion and Flame. – 2006. – Vol. 145. – P. 316–323.
(14) Petrova M. V., Williams F. A. A small detailed chemical-kinetic mechanism for hydrocarbon combustion // Combustion and Flame. – 2006. – Vol. 144. – P. 526–544.
(15) Li J., Zhao Z. W., Kazakov A., Chaos M., Dryer F. L., Scire F. L. A comprehensive kinetic mechanism for CO, CH₂O and CH₃OH combustion // International Journal of Chemical Kinetics. – 2007. – Vol. 39. – P. 109–136.
(16) Chaos M., Dryer F. L. Syngas combustion kinetics and applications // Combustion Science and Technology. – 2008. – Vol. 180. – P. 1053–1096.
(17) Sun H., Yang S. I., Jomaas G., Law C. K. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion // Proceedings of the Combustion Institute. – 2007. – Vol. 31. – P. 439–446.
(18) Frassoldati A., Faravelli T., Ranzi E. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds // International Journal of Hydrogen Energy. – 2007. – Vol. 32. – P. 3471–3485.
(19) Le Cong T., Dagaut P. Experimental and detailed kinetic modeling of the oxidation of methane and methane/syngas mixtures and effect of carbon dioxide addition // Combustion Science and Technology. – 2008. – Vol. 180, № 10. – P. 2046–2091.
(20) Dean A. M., Steiner D. C., Wang E. E. A shock tube study of the H₂/O₂/CO/Ar and H₂/N₂O/CO/Ar systems: measurement of the rate constant for H + N₂O = N₂ + OH // Combustion and Flame. – 1978. – Vol. 32. – P. 73–83.
(21) Yetter R. A., Rabitz H., Dryer F. L. Flow reactor studies of carbon monoxide/hydrogen/oxygen kinetics // Combustion Science and Technology. – 1991. – Vol. 79. – P. 129–140.
(22) Arustamyan A. M., Shakhnazaryan I. K., Philpossyan A. G., Nalbandyan A. B. The kinetics and the mechanism of the oxidation of carbon monoxide in the presence of hydrogen // International Journal of Chemical Kinetics. – 1980. – № 12. – P. 55–75.
(23) Smith M. G. P. et al. GRI-Mech 3.0. – URL: http://www.me.berkeley.edu/gri_mech/
(24) McLean I.C., Smith D.B., Taylor S.C. The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction // Proc. Combust. Inst. – 1994. – Vol. 25. – P. 749–757.
(25) Vagelopoulos C.M., Egolfopoulos F.N. Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air // Proc. Combust. Inst. – 1994. – Vol. 25. – P. 1317–1323.
(26) Kim T.J., Yetter R.A., Dryer F.L. New results on moist CO oxidation: high pressure, high temperature experiments and comprehensive kinetic modeling // Proc. Combust. Inst. – 1994. – Vol. 25. – P. 759–766.
(27) Lewis B., von Elbe G. Combustion, Flames, and Explosions of Gases. – 3rd ed. – New York: Academic Press, 1987. – 398 p.
(28) Gardiner W.C. Jr., McFarland M., Morinaga K., Takeyama T., Walker B.F. Ignition delays in H₂–O₂–CO–Ar mixtures // J. Phys. Chem. – 1971. – Vol. 75. – P. 1504–1509.
(29) Huang Y., Sung C.J., Eng J.A. Laminar flame speeds of primary reference fuels and reformer gas mixtures // Combust. Flame. – 2004. – Vol. 139. – P. 239–251.
(30) Mueller M.A., Yetter R.A., Dryer F.L. Flow reactor studies and kinetic modeling of the H₂/O₂/NOₓ and CO/H₂O/O₂/NOₓ reactions // Int. J. Chem. Kinet. – 1999. – Vol. 31. – P. 705–724.
(31) Mittal G.C.J., Sung R.A., Yetter R.A. Autoignition of H₂/CO at elevated pressures in a rapid compression machine // Int. J. Chem. Kinet. – 2006. – Vol. 38. – P. 516–529.
(32) Sivaramakrishnan R., Comandini A., Tranter R.S., Brezinsky K., Davis S.G., Wang H. Combustion of CO/H₂ mixtures at elevated pressures // Proc. Combust. Inst. – 2007. – Vol. 31. – P. 429–437.
(33) Alzueta M.U., Bilbao R., Glarborg P. Inhibition and sensitization of fuel oxidation by SO₂ // Combust. Flame. – 2001. – Vol. 127. – P. 2234–2251.
(34) Hasegawa T., Sato M. Study of ammonia removal from coal-gasified fuel // Combust. Flame. – 1998. – Vol. 114. – P. 246–258.
(35) Walton S.M., He X., Zigler B.T., Wooldridge M.S. An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications // Proc. Combust. Inst. – 2007. – Vol. 31. – P. 3147–3154.
(36) Burke M.P., Qin X., Ju Y., Dryer F.L. Measurements of hydrogen syngas flame speeds at elevated pressures // Proc. 5th US Combustion Meeting. – San Diego, CA, USA, 2007. – Mar. 25–28. – Paper No. A16.
(37) Fotache C.G., Tan Y., Sung C.J., Law C.K. Ignition of CO/H₂/N₂ versus heated air in counterflow: experimental and modeling results // Combust. Flame. – 2000. – Vol. 120. – P. 417–426.
(38) Skinner G.B., Ringrose G.H. Ignition delays of a hydrogen–oxygen–argon mixture at relatively low temperature // J. Chem. Phys. – 1965. – Vol. 42. – P. 2190–2192.
(39) Schott G.L., Kinsey J.L. Induction times in the hydrogen–oxygen reaction // J. Chem. Phys. – 1958. – Vol. 29, No. 5. – P. 1177–1182.
(40) Egolfopoulos F.N., Law C.K. An experimental and computational study of the burning rates of ultralean to moderately-rich H₂/O₂/N₂ laminar flames with pressure variations // Proc. Combust. Inst. – 1991. – Vol. 23. – P. 333–340.
(41) Vagelopoulos C.M., Egolfopoulos F.N., Law C.K. Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique // Proc. Combust. Inst. – 1994. – Vol. 25. – P. 1341–1347.
(42) Karpov V.P., Lipatnikov A.N., Wolanski P. Finding the Markstein number using the measurements of expanding spherical laminar flames // Combust. Flame. – 1997. – Vol. 109, No. 3. – P. 436–448.
(43) Kalitan D.M., Petersen E.L. Ignition and oxidation of lean CO/H₂ fuel blends in air // AIAA Paper 2005-3767. 41st AIAA/ASME/ASEE Joint Propulsion Conference & Exhibit. – Tucson, AZ, USA, July 10–13, 2005.
(44) Ranzi E., Sogaro A., Gaffuri P., Pennati G., Faravelli T. A wide range modeling study of methane oxidation // Combust. Sci. Tech. – 1994. – Vol. 96, No. 4–6. – P. 279–325.
(45) Dagaut P., Lecomte F., Mieritz J., Glarborg P. Experimental and kinetic modeling study of the effect of NO and SO₂ on the oxidation of CO–H₂ mixtures // Int. J. Chem. Kinet. – 2003. – Vol. 35. – P. 564–575.
(46) Glarborg P., Kubel D., Dam-Johansen K., Chiang H., Bozzelli J.W. Impact of SO₂ and NO on CO oxidation under post-flame conditions // Int. J. Chem. Kinet. – 1996. – Vol. 28. – P. 773–790.
(47) Hassan M.I., Aung K.T., Faeth G.M. Properties of laminar premixed CO/H₂/air flames at various pressures // J. Propulsion Power. – 1997. – Vol. 13, No. 2. – P. 239–245.
(48) Vandooren J., Van Tiggelen P.J., Pauwels J.F. Experimental and modeling studies of a rich H₂/CO/N₂O/Ar flame // Combust. Flame. – 1997. – Vol. 109. – P. 647–668.
(49) Natarajan J., Kochar Y., Lieuwen T., Seitzman J. // Proc. Combust. Inst. – 2009. – Vol. 32. – P. 1261–1268.
(50) Kee R.J., Rupley F.M., Miller J.A. Chemkin-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics. – Sandia Laboratories Report SAND89-8009B. – 1993.
(51) Kalitan D.M., Mertens J.D., Crofton M.W., Petersen E.L. Ignition and oxidation of lean CO/H₂ fuel blends in air // J. Propulsion Power. – 2007. – Vol. 23. – P. 1291–1303.
(52) Petersen E.L., Kalitan D.M., Barrett A.B., Reehal S.C., Mertens J.D., Beerer D.J., Hack R.L., McDonnell V.G. New syngas/air ignition data at lower temperature and elevated pressure and comparison to current kinetics models // Combust. Flame. – 2007. – Vol. 149. – P. 244–247.
(53) Herzler J., Naumann C. Shock tube study of the ignition of lean CO/H₂ fuel blends at intermediate temperatures and high pressure // Combust. Sci. Tech. – 2008. – Vol. 180. – P. 2015–2028.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 В.Е. Мессерле, Э.Ф. Осадчая, Н.А. Славинская, А.Б. Устименко

This work is licensed under a Creative Commons Attribution 4.0 International License.