Vibrational spectroscopy of ICAO taggants
DOI:
https://doi.org/10.18321/Keywords:
markers, spectra, explosives, devicesAbstract
The paper discusses the fundamental physical and chemical properties of ICAO taggants, namely, ethylene glycol dinitrate (EGDN, C2H4(ОNО2)2), ortho-mononitrotoluene (2-NT, С7Н7NO2), para-mononitrotoluene (4-NT, С7Н7NO2), 2,3-dimethyl-2,3-dinitrobutane (DMDNB,C6H12(NO2)2) and 2,4-dinitrotoluene (2,4-DNT, C7H6N2O4). Special attention is paid to an analysis of the published data on temperature dependences of saturated vapor pressure of ICAO taggants and 2,4-DNT. The paper reports on a procedure developed for preparing samples of EGDN, 4-NT, 2-NT, 2,4-DNT and DMDNB of high purity (with the assay of >99.8%) with modern methods of their synthesis and decontamination. The authors studied experimentally IR absorption spectra of ICAO taggants in the vapor state at room temperature and those of 2,4-DNT vapors at T=330 K over a wide frequency range (from 500 to 4,000 cm-1). The observed vibrational bands have been pre-assigned. IR spectra of ICAO taggants and 2,4-DNT are shown to be free of bands of gaseous decomposition products, in contrast to RDX and penthrite. Using modern methods of quantum chemistry has ensured characterization of equilibrium geometric configurations of the listed molecules and calculation of fundamental vibration frequencies. Absorption cross-section rates have been estimated for the most intensive bands in the experimental IR spectra of 4-NT, 2-NT and 2,4-DNT. Analyzed are Raman spectra of a variety of high explosives and ICAO taggants produced with the use of exciting laser radiation in the UV range. The distinctive feature of these spectra is proven to be intensive lines in these spectra that are related not only to symmetric valence vibration of the NO2 group but also to vibrations of C-C, C-O, C-N, C-H, O-N bonds that can be used in the capacity of analytical in the Raman spectra analysis of microparticles of explosive and vapors of ICAO taggants. On the grounds of the analysis of modern laser technologies, a conclusion has been made that their use in conjunction with the spectroscopy data obtained will provide the means of reliable local and stand-off detec-tion and identification of ICAO taggants and a range of explosives with a sufficient selectivity level in both the condensed and vapor states in the open atmosphere. The as-obtained results may also be used for a real-time investigation of burning processes of ICAO taggant containing compounds.
References
(1) Howard R.D. Terrorism and Counterterrorism: Understanding the New Security Environment: Readings and Interpretations. New York; London: McGraw-Hill, 2008. 674 p.
(2) Современный терроризм и борьба с ним: социально-гуманитарные измерения / под ред. Ященко В.В. М.: МЦНМО, 2007. 216 с.
(3) Карапузиков А.И., Набиев Ш.Ш., Надеждинский А.И., Пономарев Ю.Н. Лазерные технологии обнаружения паров взрывчатых веществ в открытой атмосфере: аналитические возможности для противодействия террористической угрозе // Оптика атмосферы и океана. 2010. Т. 23, № 10. С. 894–904.
(4) Vapor and Trace Detection of Explosives for Antiterrorism Purposes / eds. Krausa M., Reznev A. Dordrecht: Kluwer Academic Publ., 2004. 152 p.
(5) Tourné M. Developments in Explosives Characterization and Detection // Journal of Forensic Research. 2013. Vol. 4, No. 6. P. S12(1–10).
(6) Caygill J.S., Davis F., Higson S.P.J. Current Trends in Explosive Detection Techniques // Talanta. 2012. Vol. 88, No. 1. P. 14–29.
(7) Nilles J.M., Connell T.R., Stokes S.T., Durst H.D. Explosives Detection Using Direct Analysis in Real Time (DART) Mass Spectrometry // Propellants, Explosives, Pyrotechnics. 2010. Vol. 35, No. 5. P. 446–451.
(8) Makas A.L., Troshkov M.L., Kudryavtsev A.S., Lunin V.M. Miniaturized mass-selective detector with atmospheric pressure chemical ionization // Journal of Chromatography B. 2004. Vol. 800, No. 1. P. 63–67.
(9) Грузнов В.М., Филоненко В.Г., Балдин М.Н., Шишмарев А.Т. Портативные экспрессные газоаналитические приборы для определения следовых количеств веществ // Российский химический журнал (Журнал Российского химического общества им. Д.И. Менделеева). 2002. Т. XLVI, № 4. С. 100–108.
(10) Electronic Noses & Sensors for the Detection of Explosives / eds. Gardner J.W., Yinon J. New York: Kluwer Academic Publ., 2004. 308 p.
(11) Karpas Z. Ion mobility spectrometry: a tool in the war against terror // Bulletin of the Israel Chemical Society. 2009. No. 24. P. 26–30.
(12) Aspects of Explosives Detection / ed. Marshall M. New York; London: Elsevier, 2008. 288 p.
(13) Bielecki Z., Janucki J., Kawalec A., Mikołajczyk J., Pałka N., Pasternak M., Pustelny T., Stacewicz T., Wojtas J. Sensors and Systems for the Detection of Explosive Devices – An Overview // Metrology and Measurement Systems. 2012. Vol. XIX, No. 1. P. 3–28.
(14) Nabiev Sh.Sh., Palkina L.A. Current trends in the development of methods of remote detection of explosives and toxic chemicals // Proc. of III Intern. Conf. “Atmosphere, Ionosphere, Safety” (AIS-2012). Kaliningrad, Russia, 2012. P. 122–124.
(15) Primera-Pedrozo O.M., Soto-Feliciano Y.M., Pacheco-Londoño L.C., Hernández-Rivera S.P. Detection of High Explosives Using Reflection Absorption Infrared Spectroscopy with Fiber Coupled Grazing Angle Probe/FTIR // Sensors and Imaging. 2009. Vol. 10, No. 1. P. 1–13.
(16) Snels M., Venezia T., Belfiore L. Detection and identification of TNT, 2,4-DNT and 2,6-DNT by near-infrared cavity ringdown spectroscopy // Chemical Physics Letters. 2010. Vol. 489, No. 1–3. P. 134–140.
(17) Östmark H., Nordberg M., Carlsson T.E. Stand-off detection of explosives particles by multispectral imaging Raman spectroscopy // Applied Optics. 2011. Vol. 50, No. 28. P. 5592–5599.
(18) Tuschel D.D., Mikhonin A.V., Lemoff B.E., Asher S.A. Deep Ultraviolet Resonance Raman Excitation Enables Explosives Detection // Applied Spectroscopy. 2010. Vol. 64, No. 4. P. 425–432.
(19) Piorek B.D., Lee S.J., Moskovits M., Meinhart C.D. Free-surface microfluidics/surface-enhanced Raman spectroscopy for real-time trace vapor detection of explosives // Analytical Chemistry. 2012. Vol. 84, No. 22. P. 9700–9705.
(20) Bauer C., Willer U., Schade W. Use of quantum cascade laser for detection of explosives: progress and challenges // Optical Engineering. 2010. Vol. 49, No. 11. P. 111126.
(21) Chen X., Guo D., Choa F.-S., Wang C.C., Trivedi S., Snyder A.P., Ru G., Fan J. Standoff photoacoustic detection of explosives using quantum cascade laser and an ultrasensitive microphone // Applied Optics. 2013. Vol. 52, No. 12. P. 2626–2632.
(22) Набиев Ш.Ш., Ставровский Д.Б., Палкина Л.А., Збарский В.Л., Юдин Н.В., Голубева Е.Н., Вакс В.Л., Домрачева Е.Г., Собакинская Е.А., Черняева М.Б. Исследование паров тринитротолуола, гексогена, тэна и продуктов их частичного разложения методами молекулярной спектроскопии // Горение и плазмохимия. 2013. Т. 11, № 1. С. 19–44.
(23) Östmark H., Wallin S., Ang H. G. Vapor pressure of explosives: a critical review // Propellants, Explosives, Pyrotechnics. — 2012. — № 37. — С. 12–23.
(24) Набиев Ш. Ш., Ставровский Д. Б., Вакс В. Л., Домрачева Е. Г., Приползин С. И., Собакинская Е. А., Черняева М. Б. СубТГц и ИК-Фурье-спектроскопия продуктов естественного распада ВВ // Журнал физической химии. — 2011. — Т. 85, № 8. — С. 1521–1528.
(25) Набиев Ш. Ш., Ставровский Д. Б., Палкина Л. А., Збарский В. Л., Юдин Н. В., Вакс В. Л., Домрачева Е. Г., Черняева М. Б. Спектрохимические особенности некоторых бризантных взрывчатых веществ в парообразном состоянии // Химическая физика. — 2013. — Т. 32, № 5. — С. 13–31.
(26) Голубева Е. Н., Набиев Ш. Ш. ИК-спектроскопия паров некоторых взрывчатых веществ: эксперимент и квантово-химические расчёты // Сборник трудов I Междунар. интернет-конф. «На стыке наук. Физико-химическая серия». — Казань, 2013. — С. 43–53.
(27) Convention on the Marking of Plastic Explosives for the Purpose of Detection (Montreal, 1 March 1991). — ICAO, Doc. 9571. — Режим доступа: http://www.icao.org/
(28) Committee on Marking, Rendering Inert, and Licensing of Explosive Materials. Containing the Threat from Illegal Bombings. — Washington: National Academy Press, 1998. — Р. 72.
(29) Hornback J. M. Organic Chemistry. — 2-nd ed. — New York: Cengage Learning, 2005. — 1219 p.
(30) Beard R. R., Noe J. T. Aromatic nitro and amino compounds // In: Patty’s Industrial Hygiene and Toxicology. / Eds. Clayton G. D., Clayton F. E. — New York: John Wiley & Sons, 1981. — Vol. 2A. — Р. 2413–2490.
(31) Counterterrorist Detection Techniques of Explosives / Ed. Yinon J. — New York: Elsevier, 2007. — 454 p.
(32) Несмеянов А. Н., Кочеткова Н. С. Основные направления практического использования ферроцена и его производных // Успехи химии. — 1974. — Т. 43, № 9. — С. 1513–1523.
(33) Смирнов С. П., Ахметов И. З., Габдуллин Р. Х., Ганшин В. М., Майоров А. В., Махонин И. К., Савенко А. К., Савельев Ю. И., Фесенко А. В., Чебышев А. В. Маркирующее вещество: пат. № 2134253 РФ. — Приоритет от 10.08.1999.
(34) Коган Я. Н. Метод молекулярных ядер конденсации и его аналитическое использование // Журнал аналитической химии. — 1992. — Т. 47, № 10–11. — С. 1794–1803.
(35) Gonzalez M. E., Anderson D. K., Spall D. Identity tagging for explosives with ultra-trace rare isotopic elements // Compendium International Explosives Symposium. — Fairfax, VA, 1995. — BATF, 1996. — P. 1–6.
(36) Yinon J., Zitrin S. Modern Methods and Applications in Analysis of Explosives. — New York: John Wiley and Sons, 1996. — 316 p.
(37) Руденко А. Б. Хроматография опасных веществ при террористических актах, авариях и катастрофах // Российский химический журнал. — 2005. — Т. XLIX, № 4. — С. 125–131.
(38) Нехорошев С. В., Туров Ю. П., Нехорошев В. П., Нехорошева А. В. Идентификация и химическая маркировка веществ, материалов и изделий // Журнал аналитической химии. — 2010. — Т. 65, № 10. — С. 1012–1019.
(39) Jones D. E., Lightfoot P. D., Fouchard R. C., Kwok Q. S. M. Thermal properties of DMNB, a detection agent for explosives // Thermochimica Acta. — 2002. — № 388 (1–2). — P. 159–173.
(40) Ильин В. П., Валешный С. И., Кашаев В. А., Тихомирова Н. П. Промышленные технологии получения маркирующих добавок. — Дзержинск: ГосНИИ «Кристалл», 2010. — 102 с.
(41) Moore D. S. Instrumentation for trace detection of high explosives // Review of Scientific Instruments. — 2004. — № 75 (8). — P. 2499–2512.
(42) Жилин В. Ф., Орлова Е. Ю., Шутов Г. М., Збарский В. Л., Рудаков Г. Ф., Веселова Е. В. Руководство к лабораторному практикуму по синтезу нитросоединений. — М.: МХТИ им. Д. И. Менделеева, 2007. — 240 с.
(43) Бюлер К., Пирсон Д. Органические синтезы. Ч. 2. — М.: Мир, 1973. — 591 с.
(44) Widegren J. A., Bruno T. J. Gas saturation vapor pressure measurements of mononitrotoluene isomers from (283.15 to 313.15) K // Journal of Chemical and Engineering Data. — 2010. — № 55. — P. 159–164.
(45) Ewing R. G., Waltman M. J., Atkinson D. A., Grate J. W., Hotchkiss P. J. The vapor pressures of explosives // Trends in Analytical Chemistry. — 2013. — № 42. — P. 35–48.
(46) Verevkin S. P., Heintz A. Thermochemistry of substituted benzenes: quantification of ortho-, para-, meta-, and buttress interactions in alkyl-substituted nitrobenzenes // Journal of Chemical Thermodynamics. — 2000. — № 32 (9). — P. 1169–1182.
(47) Pella P. A. Measurement of vapor pressures of TNT, 2,4-DNT, 2,6-DNT, and EGDN // Journal of Chemical Thermodynamics. — 1977. — № 9 (4). — P. 301–305.
(48) Freedman A., Kebabian P. L., Li Z. M., Robinson W. A., Wormhoudt J. C. Apparatus for determination of vapor pressures at ambient temperatures employing a Knudsen effusion cell and quartz crystal microbalance // Measurement Science and Technology. — 2008. — № 19. — P. 125102.
(49) Lenchitz C., Velicky R. W. Vapor pressure and heat of sublimation of three nitrotoluenes // Journal of Chemical and Engineering Data. — 1970. — Т. 15. — P. 401–403.
(50) Збарский В. Л., Жилин В. Ф. Толуол и его нитропроизводные. — М.: URSS, 2000. — 272 с.
(51) Ramalingam S., Periandy S., Govindarajan M., Mohan S. FT IR and FT Raman spectra, assignments, ab initio HF and DFT analysis of 4-nitrotoluene // Spectrochimica Acta. Part A. — 2010. — Т. 75, № 4. — P. 1308–1314.
(52) Abu-Awwad F. M. A Quantum Mechanical Study of the Nitration of Simple Aromatic Systems. — Doct. Thesis. Emporia (Kansas): Emporia State University, 1996. — 121 p.
(53) Qayyum M., Venkatram R. B., Rao G. R. Vibrational analysis of mononitro-substituted benzamides, benzaldehydes and toluenes. Part I // Spectrochimica Acta. Part A. — 2004. — Т. 60 (1–2). — P. 279–290.
(54) Yildirim G., Senol S. D., Dogruer M., Ozturk O., Senol A., Tasci A. T., Terzioglu C. Theoretical investigations of α,α,α-trifluoro-3-, p- and o-nitrotoluene by means of density functional theory // Spectrochimica Acta. Part A. — 2012. — Т. 85 (1). — P. 271–282.
(55) Tomkinson J. Comment on: “FT IR and FT Raman spectra, assignments, ab initio HF and DFT analysis of 4-nitrotoluene” by S. Ramalingam et al. // Spectrochimica Acta. Part A. — 2010. — Т. 77 (2). — P. 539–540.
(56) Chen P. C., Lo W., Hu K. H. Ab initio studies of the molecular structures of dinitrotoluenes // Journal of Molecular Structure (Theochem). — 1997. — Т. 389. — P. 91–96.
(57) Ramos C., Alzate L., Colón Y., Santana A., Hernandez-Rivera S. P., Castro M. E., Briano J. G., Mina N. Theoretical studies of the molecular structures of dinitrotoluenes and their interactions with siloxane surface of clay minerals // Proc. SPIE. — 2004. — № 5415. — P. 1377–1388.
(58) Ramos C., Alzate L., Colón Y., Hernandez-Rivera S. P., Mina N. Computational modeling of the adsorption of 2,4-DNT on clay // Proc. SPIE. — 2005. — № 5794. — P. 1290–1299.
(59) Beresneva G. A., Khristenko L. V., Krasnoshchekov S. V., Pentin Yu. A. Vibrational spectra and conformational composition of ethylene glycol dinitrate in solid phases // Journal of Applied Spectroscopy. — 1988. — Т. 48 (6). — P. 614–619.
(60) Lemi T., Erkoç S. Density functional theory calculations for [C₂H₄N₂O₆]⁽ⁿ⁾ (n = 0, +1, −1) // Journal of Hazardous Materials. — 2006. — Т. A136 (2). — P. 164–169.
(61) Cong X. D., Xiao H. M. Studies on the molecular structures, vibrational spectra and thermodynamic properties of organic nitrates using density functional theory and ab initio methods // Journal of Molecular Structure (Theochem). — 2001. — Т. 572 (1–3). — P. 213–221.
(62) Kucharski S. A., Czuchajowski L. Changeability of MINDO/2 force constants for rotational isomers of ethylnitroderivatives calculated by Pulay force method // Polish Journal of Chemistry. — 1981. — Т. 55. — P. 2059–2068.
(63) Li M., Guo X., Li F., Song H. Theoretical studies on the structures, thermodynamic properties, detonation performance and pyrolysis mechanisms for six dinitrate esters // Chinese Journal of Chemistry. — 2009. — Т. 27 (10). — P. 1871–1878.
(64) Varsanyi G. Assignments for Vibrational Spectra of 700 Benzene Derivatives. — Budapest: Akademiai Kiado, 1973. — 668 p.
(65) Береснева Г. А., Христенко Л. В., Пентин Ю. А. Колебательный спектр и поворотная изомерия динитрата этиленгликоля // Вестник Московского государственного университета. Сер. 2: Химия. — 1985. — Т. 26 (6). — С. 535.
(66) Diallo A. O. Infrared spectra and conformations of 2,3-dimethyl-2,3-dinitrobutane and 2,2,3,3-tetranitrobutane // Spectrochimica Acta. Part A. — 1974. — Т. 30 (8). — P. 1505–1512.
(67) Tan B., Chia L. H., Huang H. H., Kuok M. H., Tang S. H. Rotational isomerism in 2,3-dinitro-2,3-dimethylbutane // Journal of the Chemical Society. Perkin Transactions 2. — 1984. — P. 1407–1413.
(68) Банкер Ф., Йенсен П. Симметрия молекул и спектроскопия. — М.: Научный мир, 2004. — 763 с.
(69) Бурштейн К. Я., Шорыгин П. П. Квантово-химические расчёты в органической химии и молекулярной спектроскопии. — М.: Наука, 1989. — 104 с.
(70) Wilson E. B. The normal modes and frequencies of vibration of the regular plane hexagon model of the benzene molecule // Physical Review. — 1934. — Т. 45 (10). — P. 706–714.
(71) Kalsi P. S. Spectroscopy of Organic Compounds. 6th ed. — New York–London: New Age, 2004. — 652 p.
(72) Garignan Y. P., Hickman C. L. Quantitative Infrared Spectrophotoimetry of Organic Nitrate Esters. — Tech. Rep. 4350. N. J.: Picatinny Arsenal, Dover, 1972. — 76 p.
(73) Urbański T. Conformational analysis of some nitro and nitroso compounds // Journal of Scientific and Industrial Research. — 1974. — № 33. — P. 124–130.
(74) McNesby K. L., Wolfe J. E., Morris J. B., Pesce-Rodriguez R. A. Fourier transform Raman spectroscopy of some energetic materials and propellant formulations // Journal of Raman Spectroscopy. — 1993. — Т. 25 (1). — P. 75–87.
(75) Nagli L., Gaft M., Fleger Y., Rosenbluh M. Absolute Raman cross-sections of some explosives: trend to UV // Optical Materials. — 2008. — Т. 30 (11). — P. 1747–1754.
(76) Nagli L., Gaft M. Raman scattering spectroscopy for explosives identification // Proc. SPIE. — 2007. — № 6552. — P. 65520Z.
(77) Comanescu G., Manka C. K., Grun J., Nikitin S., Zabetakis D. Identification of explosives with two-dimensional ultraviolet resonance Raman spectroscopy // Applied Spectroscopy. — 2008. — Т. 62. — P. 833–839.
(78) Surface-Enhanced Raman Scattering: Physics and Applications. / Eds. Kneipp K., Moskovits M., Kneipp H. — Berlin–Heidelberg: Springer, 2006. — 500 p.
(79) Botti S., Almaviva S., Cantarini L., Palucci A., Puiu A., Rufoloni A. Trace level detection and identification of nitro-based explosives by surface-enhanced Raman spectroscopy // Journal of Raman Spectroscopy. — 2013. — Т. 44 (3). — P. 463–468.
(80) Sylvia J. M., Janni J. A., Klein J. D., Spencer K. M. Surface-enhanced Raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines // Analytical Chemistry. — 2000. — Т. 72 (23). — P. 5834–5840.
(81) Jeréz-Rozo J. I., del Rocío Balaguera M., Cabanzo A., de la Cruz Montoya E., Hernández-Rivera S. P. Enhanced Raman scattering of nitro-explosives on nanoparticle substrates: Au–Ag alloy, tin oxide and scandium oxide // Proc. SPIE. — 2006. — № 6201. — P. 62012G.
(82) Gaft M., Nagli L. UV-gated Raman spectroscopy for standoff detection of explosives // Optical Materials. — 2008. — Т. 30 (11). — P. 1739–1746.
(83) Moore D. S., Scharff R. J. Portable Raman explosives detection // Analytical and Bioanalytical Chemistry. — 2009. — Т. 393 (6–7). — P. 1618–1642.
(84) Carter J. C., Angel S. M., Snyder M. L., Scaffidi J., Whipple R. E., Reynolds J. G. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument // Applied Spectroscopy. — 2005. — Т. 59 (6). — P. 65–71.
(85) Janni J. A. Vibrational Kerr Spectroscopy. — Doct. Phil. Thesis. Massachusetts: Massachusetts Institute of Technology, 1998. — 155 p.
(86) Curl R. F., Capasso F., Gmachl C., Kosterev A. A., McManus B., Lewicki R., Pusharsky M., Wysocki G., Tittel F. K. Quantum cascade lasers in chemical physics // Chemical Physics Letters. — 2010. — Т. 487 (1). — P. 1–18.
(87) Springer Handbook of Lasers and Optics. 2nd ed. / Ed. Träger F. — Berlin–Heidelberg: Springer-Verlag, 2012. — 1694 p.
(88) Troccoli M., Lyakh A., Fan J., Wang X., Maulini R., Tsekoun A. G., Go R., Patel C. K. N. Long-wave IR quantum cascade lasers for emission in the λ = 8–12 μm spectral region // Optical Materials Express. — 2013. — Т. 3 (9). — P. 1546–1560.
(89) Grisard A., Lallier E., Gérard B. Quasiphase-matched gallium arsenide for versatile mid-infrared frequency conversion // Optical Materials Express. — 2012. — Т. 2 (8). — P. 1020–1025.
(90) Чернин С. М. Многоходовые системы в оптике и спектроскопии. — М.: Физматлит, 2010. — 240 с.
Downloads
Published
Issue
Section
License
Copyright (c) 2013 Ш.Ш. Набиев, Д.Б. Ставровский, Л.А. Палкина, Е.Н. Голубева, В.Л. Збарский, Н.В. Юдин, В.М. Семенов

This work is licensed under a Creative Commons Attribution 4.0 International License.