Formation of fullerenes in flames

Authors

  • Z.A. Mansurov Institute of Combustion Problems, Bogenbai Batyr St. 172, 050012 Almaty, Kazakhstan
  • M. Nazhipkyzy Institute of Combustion Problems, Bogenbai Batyr St. 172, 050012 Almaty, Kazakhstan
  • N.G. Prikhodko Institute of Combustion Problems, Bogenbai Batyr St. 172, 050012 Almaty, Kazakhstan

Keywords:

fullerene, graphene, sphere, ellipsoid, tube

Abstract

A fullerene is any molecule composed entirely of carbon, in the form of a hollow sphere, ellipsoid, tube, and many other shapes. In this paper were considered works on formation and the synthesis of fullerenes in flames in the following sections, such as, the structure and properties of fullerenes; applications of fullerenes; methods for identification of fullerenes; methods for producing fullerenes; formation and synthesis of fullerenes in flame; synthesis of fullerenes in flames with applied electrical field; mechanism of fullerenes formation. Also was presented modified scheme for soot and fullerenes formation process in flames. It has been found that if the peripheral zone of the benzene flame is heated by some external source, such as a laser beam, which not just burns the soot but also creates the same conditions as in the middle of the flame, the concentration of fullerenes increases. The increase in the yield of fullerenes in the case where a ring electrode is positioned above the peripheral part of the reaction zone of a flame is due to the glow-discharge conditions providing an effective synthesis of fullerenes.

References

(1) Ahrens J., Bachmann M., Baum Th., Griesheimer J., Kovacs R., Weilmünster P., Homann K.H. Int. J. Mass Spectrom. Ion Proc., 1994, Vol. 138, P. 133–148.

(2) Howard J.B., Lafleur A.L. Fullerenes synthesis in combustion. Carbon, 1992, Vol. 30, No. 8, P. 1183–1201.

(3) Kroto H.W., Health J.R., O’Brien S.C., Curl R.F., Smalley R.F. Nature, 1985, P. 162–164.

(4) Howard J.B. Fullerenes formation in flames. Invited topical review, 24th Symp. (Int.) on Combustion. Pittsburgh: The Combustion Institute, 1992, P. 933–946.

(5) Krätschmer W., Lamb L.D., Fostiropoulos K., Huffman D.R. Nature, 1990, Vol. 347, P. 354.

(6) Huddon R.C. et al. Nature, 1991, Vol. 350, P. 320.

(7) Jensen A.W., Daniels C. J. Org. Chem., 2003, Vol. 68, P. 207.

(8) Thakral S., Mehta R.M. Ind. J. Pharm. Sci., 2006, Vol. 68, No. 1, P. 13.

(9) Tagmatarchis N., Shinohara N. Mini Reviews in Medicinal Chemistry, 2001, Vol. 1, No. 4, P. 339.

(10) Da Ros T., Spalluto G., Prato M. Croatica Chemica Acta, 2001, Vol. 74, No. 4, P. 743.

(11) Yang X.L., Fan C.H., Zhu H.S. Toxicology in Vitro, 2002, Vol. 16, P. 41.

(12) Irie K., Nakamura Y., Ohigashi N. et al. Biosci. Biotechnol. Biochem., 1996, Vol. 60, No. 8, P. 1359.

(13) Sun Y.-P., Lawson G.E., Riggs J.E., Ma B., Wang N., Moton D.K. J. Phys. Chem. A, 1998, Vol. 102, P. 5520.

(14) Mansurov Z.A., Lesbaev B.T., Chenchik D.I. et al. Synthesis of fullerenes and carbon nanotubes in flames. Book of abstracts, Int. Conf. on Carbon. Nagano, 2008, P. 134–139.

(15) Gerhardt P., Loffler S., Homann K.-H. The formation of polyhedral carbon ions in fuel-rich acetylene and benzene flames. Proc. 22nd Int. Symp. Combust., The Combustion Inst., Pittsburgh, 1988, P. 395–401.

(16) Howard J.B., McKinnon J.T., Makarovsky Y. et al. Fullerenes C60 and C70 in flames. Nature, 1991, Vol. 352, P. 139–141.

(17) Richter H., Labrocca A.J., Grieco W.J., Taghizadeh K., Lafleur A.L., Howard J.B. Generation of higher fullerenes in flames. J. Phys. Chem. B, 1997, Vol. 101, P. 1556–1560.

(18) Mansurov Z.A., Prikhodko N.G., Mashan T.T., Lesbaev B.T. The study of influence of electric field on soot formation at low pressure. Chem. Physics, 2006, Vol. 25, No. 10, P. 18–22.

(19) Mansurov Z.A., Prikhodko N.G., Lesbaev B.T., Mashan T.T. Combustion of the premixed benzene–oxygen mixture in electric field at low pressure. Proc. 31st Int. Symp. Combust., Heidelberg, 2006, P. 164.

(20) Mansurov Z.A., Shabanova T.A., Levin V.L., Prikhod’ko N.G. A novel characteristic of a C60–C70-fullerene containing substance (according to electronic-microscopy data). Vestn. KazNU, Ser. Khimicheskaya, 2005, Vol. 39, No. 3, P. 444–448.

(21) Lafleur A.L., Howard J.B., Marr J.A., Yadav T. Proposed fullerene precursor corannulene identified in flames both in the presence and absence of fullerene production. J. Phys. Chem., 1993, Vol. 97, P. 13539–13543.

(22) Baum T., Loffler P., Weilmunster P., Homann K.-H. Fullerene ions and their relation to PAH and soot in low-pressure hydrocarbon flames. Der Bunsenges Phys. Chem., 1992, Vol. 96, P. 841–857.

(23)Bachmann M., Wiese W., Homann K.-H. Thermal and chemical influences on soot mass growth. 25th Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh, 1994, P. 635–643.

(24) Mansurov Z.A., Prikhodko N.G., Mashan T.T., Lesbaev B.T. Formation of PAH, fullerenes, nanoparticles and soot at combustion of hydrocarbons in electric field. Proc. 20th Int. Colloquium on the Dynamics of Reactive Systems, Montreal, Canada, 2005, P. 5.

(25) Calcote H.F., Gill R.J. Comparison of the ionic mechanism of soot formation with a free radical mechanism. In: Bockhorn H. (Ed.) Soot Formation in Combustion. Mechanisms and Models. Springer Series in Chemical Physics, Vol. 59. Berlin: Springer, 1994, P. 471–484.

(26) Raizer Yu.P. Gas Discharge Physics. Moscow: Nauka, 1987.

(27) Prikhodko N.G., Lesbaev B.T., Mansurov Z.A. Formation of fullerenes in a flame subjected to a gas discharge. Izv. Nats. Akad. Nauk RK, Ser. Khimicheskaya, 2006, No. 2, P. 15–18.

(28) Howard J.B., Winchester D.F., Kronholm A.J., Modestino A.J., Richter H. Method for combustion synthesis of fullerenes. Patent US 7,771,692 B2, Aug. 10, 2010.

(29) Jäger C., Huisken F., Lamas I., Henning Th. Astrophys., 2009, No. 696, P. 706–712.

(30) Homann K.H. Fullerenes and soot formation – new pathways to large particles in flames. Angew. Chem. Int. Ed., 1998, Vol. 37, P. 2435–2451.

(31) Bockhorn H. (Ed.) Soot Formation in Combustion. Berlin/Heidelberg: Springer, 1994.

(32) Mansurov Z.A. Producing Nanomaterials in Combustion. Combustion, Explosion, and Shock Waves, 2012, Vol. 48, No. 5, P. 561–569.

(33) Mansurov Z.A., Prikhodko N.G., Saveliev A.V. Obrazovanie PAH, fullerenov, uglerodnykh nanotrubok i sazhi v protsessakh gorenija [Formation of PAH, fullerenes, carbon nanotubes and soot in combustion processes]. Almaty: Kazakh University, 2012. 383 p.

(34) Mansurov Z. Soot and Nanomaterials Synthesis in the Flame. Journal of Materials Science and Chemical Engineering, 2014. DOI: 10.4236/msce.2014.21001.

(35) (Endo) Fullerenes: from production to isolation. Available at: http://www-ipcms.u-strasbg.fr/spip.php?article2166&lang=en

Downloads

Published

2013-11-20

How to Cite

Mansurov , Z., Nazhipkyzy, M., & Prikhodko, N. (2013). Formation of fullerenes in flames. Combustion and Plasma Chemistry, 11(4), 237-248. https://cpc-journal.kz/index.php/cpcj/article/view/695