Effect of microwave heating on increasing the yield of graphene and graphene-like structures from activated plant biomass

Authors

  • N.G. Prikhodko Institute of Combustion Problems, 172, Bogenbai Batyr str., Almaty, Kazakhstan; Almaty University of Energy and Communications named after G. Daukeev, 126/1, Baitursynov str., Almaty, Kazakhstan https://orcid.org/0000-0001-7733-0903
  • M.A. Yeleuov Institute of Combustion Problems, 172, Bogenbai Batyr str., Almaty, Kazakhstan; Satbayev University, 22, Satpayev str., Almaty, Kazakhstan; Bes Saiman Group, 38, Tulebayeva str., Almaty, Kazakhstan https://orcid.org/0000-0001-7488-7431
  • К. Askarul Institute of Combustion Problems, 172, Bogenbai Batyr str., Almaty, Kazakhstan; Almaty University of Energy and Communications named after G. Daukeev, 126/1, Baitursynov str., Almaty, Kazakhstan; Satbayev University, 22, Satpayev str., Almaty, Kazakhstan; Bes Saiman Group, 38, Tulebayeva str., Almaty, Kazakhstan https://orcid.org/0000-0002-8998-0409
  • A.A. Abdisattar Institute of Combustion Problems, 172, Bogenbai Batyr str., Almaty, Kazakhstan; Satbayev University, 22, Satpayev str., Almaty, Kazakhstan; Bes Saiman Group, 38, Tulebayeva str., Almaty, Kazakhstan
  • А.B. Tolynbekov Institute of Combustion Problems, 172, Bogenbai Batyr str., Almaty, Kazakhstan; al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan https://orcid.org/0000-0002-2664-888X
  • A.T. Taurbekov Institute of Combustion Problems, 172, Bogenbai Batyr str., Almaty, Kazakhstan; Bes Saiman Group, 38, Tulebayeva str., Almaty, Kazakhstan https://orcid.org/0000-0002-4588-1521

DOI:

https://doi.org/10.18321/cpc23(2)137-151

Keywords:

biomass waste, wheat straw, barley straw, rice husk, graphene-like structures, microwave action

Abstract

The article presents the results of studying the process of increasing the degree of graphitization and the yield of graphene-like structures (GLS) from pre-carbonized and activated biomass (wheat and barley straw, rice husk) by heating in a microwave oven. Microwave heating has significant advantages over conventional electric heating, which is more energy-intensive and often ineffective. Microwave heating is a convenient, economical and environmentally friendly way to obtain graphene, unlike complex multi-stage processes associated with the use of various chemical reagents. Using microwave heating, it is also possible to simplify the stage of graphene oxide reduction, since, due to the properties of graphene oxide to absorb microwaves, microwave irradiation can reduce it directly into graphene without any reducing agent or atmosphere. It is shown that the method of microwave temperature action on the HPS obtained from biomass leads to the removal of oxygen from 9-14% (in the original samples) to 0-4% when processed in a microwave oven at different temperatures, which significantly increases the degree of graphitization and the percentage of GLS yield and can be used to obtain a volumetric yield of the product for commercial purposes.

References

(1) M.T.-U. Safian, U.S. Haron, M.N.M. Ibrahim, A review on bio-based graphene derived from biomass wastes, Bioresources 15 (2020) 9756–9785. Crossref

(2) I. Berktas, M. Hezarkhani, L.H. Poudeh, B.S. Okan, Recent developments in the synthesis of graphene and graphene-like structures from waste sources by recycling and upcycling technologies: A review, Graphene Technol. 5 (2020) 59–73. Crossref

(3) N.Z.J. Zakaria, S. Rozali, N.M. Mubarak, S. Ibrahim, A review of the recent trend in the synthesis of carbon nanomaterials derived from oil palm by-product materials, Biomass Convers. Biorefinery 12 (2022) 1–32. Crossref

(4) X. Kong, Y. Zhu, H. Lei, C. Wang, Y. Zhao, E. Huo, X. Lin, Q. Zhang, M. Qian, W. Mateo, et al., Synthesis of graphene-like carbon from biomass pyrolysis and its applications, Chem. Eng. J. 399 (2020) 125808. Crossref

(5) Y. Zhang, Y. Cui, S. Liu, L. Fan, N. Zhou, P. Peng, Y. Wang, F. Guo, M. Min, Y. Cheng, et al., Fast microwave-assisted pyrolysis of wastes for biofuels production: A review, Bioresour. Technol. 297 (2019) 122480. Crossref

(6) Z. Du, Y. Li, X. Wang, Y. Wan, Q. Chen, C. Wang, X. Lin, Y. Liu, P. Chen, R. Ruan, Microwave-assisted pyrolysis of microalgae for biofuel production, Bioresour. Technol. 102 (2011) 4890–4896. Crossref

(7) A.M. Parvez, T. Wu, M.T. Afzal, S. Mareta, T. He, M. Zhai, Conventional and microwave-assisted pyrolysis of gumwood: A comparison study using thermodynamic evaluation and hydrogen production, Fuel Process. Technol. 184 (2018) 1–11. Crossref

(8) A.E.M. Fodah, M.K. Ghosal, D. Behera, Microwave-assisted pyrolysis of agricultural residues: Current scenario, challenges, and future direction, Int. J. Environ. Sci. Technol. 19 (2021) 2195–2220. Crossref

(9) S. Liu, P. Yan, H. Li, X. Zhang, W. Sun, One-step microwave synthesis of micro/nanoscale LiFePO₄/graphene cathode with high performance for lithium-ion batteries, Front. Chem. 8 (2020) 1–10. Crossref

(10) N. Wang, A. Tahmasebi, J. Yu, J. Xu, F. Huang, A. Mamaeva, A comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass, Bioresour. Technol. 190 (2015) 89–96. Crossref

(11) F. Tuinstra, J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys. 53 (1970) 1126–1130. Crossref

(12) N.K. Memon, St.D. Tse, J.F. Al-Sharab, H. Yamaguchi, A.-M.B. Goncalves, B.H. Kear, Y. Jaluria, E.Y. Andrei, M. Chhowalla, Flame synthesis of graphene films in open environments, Carbon 49 (2011) 5064–5070. Crossref

(13) A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol. 8 (2013) 235–246. Crossref

(14) L.G. Cançado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett. 11 (2011) 3190–3196. Crossref

(15) N.G. Prikhodko, B.T. Lesbaev, M. Auelkhankyzy, Z.A. Mansurov, Synthesis of graphene films in a flame, Russ. J. Phys. Chem. B 8 (2014) 61–64. Crossref

(16) N.G. Prikhodko, M. Auyelkhankyzy, B.T. Lesbayev, Z.A. Mansurov, The effect of pressure on the synthesis of graphene layers in the flame, J. Mater. Sci. Chem. Eng. 2 (2014) 13–19. Crossref

(17) N.G. Prikhodko, Z.A. Mansurov, M. Auelkhankyzy, B.T. Lesbayev, M. Nazhipkyzy, G.T. Smagulova, Flame synthesis of graphene layers at low pressure, Russ. J. Phys. Chem. B 9 (2015) 743–747. Crossref

(18) N.G. Prikhodko, G.T. Smagulova, N. Rakhymzhan, M. Auelkhankyzy, B.T. Lesbayev, M. Nazhipkyzy, Z.A. Mansurov, Synthesis of single-layer graphene in benzene–oxygen flame at low pressure, Combust. Sci. Technol. 190 (2018) 1923–1934. Crossref

(19) N. Prikhodko, M. Yeleuov, A. Abdisattar, K. Askaruly, A. Taurbekov, A. Tolynbekov, N. Rakhymzhan, Ch. Daulbayev, Enhancing supercapacitor performance through graphene flame synthesis on nickel current collectors and active carbon material from plant biomass, J. Energy Storage 73 (2023) 108853–108862. Crossref

(20) M. Yeleuov, C. Seidl, T. Temirgaliyeva, A. Taurbekov, N. Prikhodko, B. Lesbayev, F. Sultanov, C. Daulbayev, S. Kumekov, Modified activated graphene-based carbon electrodes from rice husk for supercapacitor applications, Energies 13 (2020) 4943–4953. Crossref

(21) M. Yeleuov, Ch. Daulbayev, A. Taurbekov, A. Abdisattar, R. Ebrahim, S. Kumekov, N. Prikhodko, B. Lesbayev, K. Batyrzhan, Synthesis of graphene-like porous carbon from biomass for electrochemical energy storage applications, Diam. Relat. Mater. 119 (2021) 108560–108567. Crossref

(22) L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta, General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy, Appl. Phys. Lett. 88 (2006) 163106. Crossref

Downloads

Published

2025-06-30

How to Cite

Prikhodko, N., Yeleuov, M., Askarul . К., Abdisattar, A. ., Tolynbekov А., & Taurbekov, A. (2025). Effect of microwave heating on increasing the yield of graphene and graphene-like structures from activated plant biomass. Combustion and Plasma Chemistry, 23(2), 137-151. https://doi.org/10.18321/cpc23(2)137-151