Gas-sensitive sensors based on polyaniline for monitoring CO, CH4 and NO2 at room temperature

Authors

  • А.A. Imash Al-Farabi Kazakh National University, 71 Al-Farabi ave, Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan https://orcid.org/0000-0003-3792-6512
  • R.B. Kazhdanbekov Al-Farabi Kazakh National University, 7 Al-Farabi ave, Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan https://orcid.org/0009-0004-5017-4049
  • G.T. Smagulova Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan; Abai Kazakh National Pedagogical University, 13, Dostyk аve., Almaty, Kazakhstan https://orcid.org/0000-0002-2943-5222
  • Z.A. Mansurov Al-Farabi Kazakh National University, 71 Al-Farabi ave, Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc23(2)107-121

Keywords:

gas sensors, polyaniline, gas monitoring, nitrogen dioxide (NO₂), carbon monoxide (CO), methane (CH₄)

Abstract

This study is dedicated to the 60th anniversary of Professor Bakhytzhan Tastanovich Lesbaev – a leading expert in the fields of combustion, nanomaterials, and functional carbon systems, who has made a significant contribution to the advancement of interdisciplinary research at the intersection of nanotechnology, energy, and environmental science. As industrial growth accelerates and hydrocarbon fuel usage expands, developing advanced sensor materials for tracking toxic emissions from incomplete combustion has become increasingly critical. Among the most hazardous byproducts of hydrocarbon fuel combustion are carbon monoxide (CO), methane (CH4), and nitrogen dioxide (NO2). These compounds exhibit high toxicity: carbon monoxide causes hypoxia, methane contributes to the greenhouse effect, and nitrogen dioxide irritates the respiratory tract and participates in the formation of photochemical smog. Moreover, they promote the generation of secondary pollutants, including ozone and fine particulate matter. This work investigates the potential of polymerized polyaniline (PANI) as a gas-sensitive material capable of selectively detecting these gases at room temperature. Experimental data are presented on the response of a PANI-based sensing layer – synthesized via chemical oxidative polymerization – when exposed to both reducing and oxidizing gases. The mechanisms of interaction are analyzed, including doping, charge transfer, and the influence of morphological parameters on sensor response. Key factors affecting sensitivity, selectivity, reproducibility, and operational stability are identified. The obtained results confirm the high efficiency of polyaniline as an active sensing material and substantiate its use in flexible, energy-efficient sensing platforms aimed at environmental monitoring and combustion process optimization with minimized harmful emissions.

References

(1) A. Kobald, U. Weimar, N. Barsan, Towards Understanding Temperature Modulated Smox Gas Sensor Arrays for Outdoor Air Quality Applications, Sensors and Actuators B: Chemical 440 (2025) 137879. Crossref

(2) K. Kohse-Höinghaus, Combustion, chemistry, and carbon neutrality, Chem. Rev. 123 (2023) 5139–5219. Crossref

(3) S. Dhall, B.R. Mehta, A.K. Tyagi, K. Sood, A review on environmental gas sensors: Materials and technologies, Sens. Int. 2 (2021) 100116. Crossref

(4) В.Я. Штерн, Механизм окисления углеводородов в газовой фазе, М., Изд-во АН СССР, 1960, 302 с.

(5) H. Böhm, D. Hesse, H. Jander, B. Lüers, J. Pietscher, H.G.G. Wagner, M. Weiss, The influence of pressure and temperature on soot formation in premixed flames, Symp. (Int.) Combust. 22 (1989) 403–411. Crossref

(6) М. Nazhipkyzy, Z. Mansurov, Super hydrophobic materials and coatings: overview, Combust. Plasma Chem. 18 (2020) 163–189. Crossref

(7) Z.A. Mansurov, N.G. Prikhodko, A.V. Savelev, Obrazovanie PTSU, fullerene, uglerodnykh nanotrubok i sazi v protsessakh goreniya, Алматы, КазНУ, 2012, 383 с.

(8) Z.A. Mansurov, Obtaining nanomaterials in combustion processes, Combust. Explos. Shock Waves 48 (2012) 561–569. Crossref

(9) Z.A. Mansurov, N.G. Prikhodko, M. Auyelkhankyzy, B.T. Lesbayev, M. Nazhipkyzy, Synthesis of single and few layer graphenes in flames, Proceeding of the European Combustion, 2015.

(10) Z.A. Mansurov, Soot formation, Almaty, Kazak University, 2015, 167 p.

(11) Q. Wu, Z. Ding, W. Zhang, Research progress on electrochemical gas sensors for fire detection, Int. J. Electrochem. Sci. (2025) 101043. Crossref

(12) P. Chesler, C. Hornoiu, MOX-based resistive gas sensors with different types of sensitive materials (powders, pellets, films), used in environmental chemistry, Chemosensors 11 (2023) 95. Crossref

(13) X. Liu, W. Zheng, R. Kumar, M. Kumar, J. Zhang, Conducting polymer-based nanostructures for gas sensors, Coord. Chem. Rev. 462 (2022) 214517. Crossref

(14) M.A. Farea, H.Y. Mohammed, S.M. Shirsat, P.W. Sayyad, N.N. Ingle, T. Al-Gahouari, M.D. Shirsat, Hazardous gases sensors based on conducting polymer composites, Chem. Phys. Lett. 776 (2021) 138703. Crossref

(15) C.S. Park, D.Y. Kim, E.Y. Jung, H.J. Jang, G.T. Bae, J.Y. Kim, H.S. Tae, Ultrafast room temperature synthesis of porous polythiophene via atmospheric pressure plasma polymerization technique and its application to NO₂ gas sensors, Polymers 13 (2021) 1783. Crossref

(16) H. Sustkova, J. Voves, Modeling a multiple-chain emeraldine gas sensor for NH₃ and NO₂ detection, Beilstein J. Nanotechnol. 13 (2022) 721–729. Crossref

(17) J. Kroutil, A. Laposa, V. Povolny, L. Klimsa, M. Husak, Gas sensor with different morphology of PANI layer, Sensors 23 (2023) 1106. Crossref

(18) C.H. Srinivas, D. Srinivasu, B. Kavitha, N. Narsimlu, K.S. Kumar, Synthesis and characterization of nano size conducting polyaniline, IOSR J. Appl. Phys. 1 (2012) 12–15. Crossref

(19) J. Kroutil, A. Laposa, A. Ahmad, J. Voves, V. Povolny, L. Klimsa, M. Husak, A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification, Beilstein J. Nanotechnol. 13 (2022) 411–423. Crossref

(20) M. Kumar, S. Sharma, R. Pal, B. Vidhani, A novel gas sensor based on activated charcoal and polyaniline composites for selective sensing of methanol vapors, Sens. Actuators A Phys. 353 (2023) 114210. Crossref

(21) S. Abdulla, T.L. Mathew, B. Pullithadathil, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection, Sens. Actuators B Chem. 221 (2015) 1523–1534. Crossref

(22) S. Navazani, A. Shokuhfar, M. Hassanisadi, A. Di Carlo, N. Shahcheraghi, Fabrication and characterization of a sensitive, room temperature methane sensor based on SnO₂@reduced graphene oxide-polyaniline ternary nanohybrid, Mater. Sci. Semicond. Process. 88 (2018) 139–147. Crossref

(23) R. Kashyap, R. Kumar, M. Kumar, S. Tyagi, D. Kumar, Polyaniline nanofibers based gas sensor for detection of volatile organic compounds at room temperature, Mater. Res. Express 6 (2019) 1150d3. Crossref

(24) G. Gaikwad, P. Patil, D. Patil, J. Naik, Synthesis and evaluation of gas sensing properties of PANI based graphene oxide nanocomposites, Mater. Sci. Eng. B 218 (2017) 14–22. Crossref

(25) X. Tian, X. Cui, Y. Xiao, T. Chen, X. Xiao, Y. Wang, Pt/MoS₂/polyaniline nanocomposite as a highly effective room temperature flexible gas sensor for ammonia detection, ACS Appl. Mater. Interfaces 15 (2023) 9604–9617. Crossref

(26) D. Han, Y. Wang, Y. Wang, Q. Duan, D. Li, Y. Ge, S. Sang, Machine-learning-assisted n-GaN-Au/PANI gas sensor array for intelligent and ultra-accurate ammonia recognition, Chem. Eng. J. 495 (2024) 153705. Crossref

(27) Q. Feng, H. Zhang, Y. Shi, X. Yu, G. Lan, Preparation and gas sensing properties of PANI/SnO₂ hybrid material, Polymers 13 (2021) 1360. Crossref

(28) R. Kumar, H. Rahman, S. Ranwa, A. Kumar, G. Kumar, Development of cost effective metal oxide semiconductor based gas sensor over flexible chitosan/PVP blended polymeric substrate, Carbohydr. Polym. 239 (2020) 116213. Crossref

(29) C.M. Masemola, N. Moloto, Z. Tetana, L.Z. Linganiso, T.E. Motaung, E.C. Linganiso-Dziike, Advances in polyaniline-based composites for room-temperature chemiresistor gas sensors, Processes 13 (2025) 401. Crossref

(30) S. Budi, A. Juliana, U. Cahyana, A. Purwanto, A. Imaduddin, E. Handoko, Preparation of high surface area and high conductivity polyaniline nanoparticles using chemical oxidation polymerization technique, J. Phys.: Conf. Ser. 983 (2018) 012162. Crossref

(31) Q. Sun, M.C. Park, Y. Deng, Studies on one-dimensional polyaniline (PANI) nanostructures and the morphological evolution, Mater. Chem. Phys. 110 (2008) 276–279. Crossref

(32) J. Wang, J. Wang, Z. Yang, Z. Wang, F. Zhang, S. Wang, A novel strategy for the synthesis of polyaniline nanostructures with controlled morphology, React. Funct. Polym. 68 (2008) 1435–1440. Crossref

(33) Z.A. Boeva, V.G. Sergeyev, Polyaniline: synthesis, properties, and application, Polym. Sci. Ser. C 56 (2014) 144–153. Crossref

(34) W. Wang, Vapor phase infiltration (VPI) and doping of conducting polymers, Diss., Univ. País Vasco, 2017.

(35) Y. Wanna, N. Srisukhumbowornchai, A. Tuantranont, A. Wisitsoraat, N. Thavarungkul, P. Singjai, The effect of carbon nanotube dispersion on CO gas sensing characteristics of polyaniline gas sensor, J. Nanosci. Nanotechnol. 6 (2006) 3893–3896. Crossref

(36) J. Huang, S. Virji, B.H. Weiller, R.B. Kaner, Polyaniline nanofibers: facile synthesis and chemical sensors, J. Am. Chem. Soc. 125 (2003) 314–315. Crossref

(37) M.C. Bernard, A. Hugot-Le Goff, Raman spectroscopy for the study of polyaniline, Synth. Met. 85 (1997) 1145–1146. Crossref

(38) M.C. Bernard, A. Hugot-Le Goff, Quantitative characterization of polyaniline films using Raman spectroscopy: I: Polaron lattice and bipolaron, Electrochim. Acta 52 (2006) 595–603. Crossref

(39) R. Mažeikienė, G. Niaura, A. Malinauskas, A comparative multiwavelength Raman spectroelectrochemical study of polyaniline: a review, J. Solid State Electrochem. 23 (2019) 1631–1640. Crossref

(40) A.A. Jabor, A.M. Farhan, A.H.K. Elttayef, A.A. Jabor, Preparation poly 4-bromoaniline thin films by electro deposition technique for hydrogen gas sensor, J. Phys.: Conf. Ser. 1032 (2018) 012063. Crossref

(41) S.Z. Mohammadabadi, A.R. Zanganeh, Electrochemically generated recognition sites in self‐doped polyaniline modified electrodes for voltammetric and potentiometric determination of copper (II) ion, Electroanalysis 30 (2018) 415–425. Crossref

(42) A. Roy, A. Ray, P. Sadhukhan, K. Naskar, G. Lal, R. Bhar, S. Das, Polyaniline-multiwalled carbon nanotube (PANI-MWCNT): room temperature resistive carbon monoxide (CO) sensor, Synth. Met. 245 (2018) 182–189. Crossref

(43) R.K. Sonker, B.C. Yadav, G.I. Dzhardimalieva, Preparation and properties of nanostructured PANI thin film and its application as low temperature NO₂ sensor, J. Inorg. Organomet. Polym. Mater. 26 (2016) 1428–1433. Crossref

(44) A. Umar, A.A. Ibrahim, H. Algadi, H. Albargi, M.A. Alsairi, Y. Wang, S. Akbar, Enhanced NO₂ gas sensor device based on supramolecularly assembled polyaniline/silver oxide/graphene oxide composites, Ceram. Int. 47 (2021) 25696–25707. Crossref

(45) S. Nasresfahani, Z. Zargarpour, M.H. Sheikhi, S.N. Ana, Improvement of the carbon monoxide gas sensing properties of polyaniline in the presence of gold nanoparticles at room temperature, Synth. Met. 265 (2020) 116404. Crossref

(46) S. Jain, N. Karmakar, A. Shah, N.G. Shimpi, Development of Ni doped ZnO/polyaniline nanocomposites as high response room temperature NO₂ sensor, Mater. Sci. Eng. B 247 (2019) 114381. Crossref

(47) X.B. Yan, Z.J. Han, Y. Yang, B.K. Tay, NO₂ gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization, Sens. Actuators B 123 (2007) 107–113. Crossref

Downloads

Published

2025-07-15

How to Cite

Imash А., Kazhdanbekov, R. ., Smagulova, G., & Mansurov, Z. (2025). Gas-sensitive sensors based on polyaniline for monitoring CO, CH4 and NO2 at room temperature. Combustion and Plasma Chemistry, 23(2), 107-121. https://doi.org/10.18321/cpc23(2)107-121