Onset of thermal-diffusion instabilities in rich hydrogen/air premixed counter-flow twin flames
DOI:
https://doi.org/10.18321/cpc23(2)93-105Keywords:
counter-flow hydrogen flames, thermal-diffusion instabilities, pulsations onset, model validationAbstract
The effect of flame instabilities onset in the counter-diffusion twin flame configuration is investigated numerically. The onset of instabilities in rich hydrogen/air combustion system is reported and properties of pulsating solutions are studied. Effects of mixture composition and strain rate as well as pressure are considered. Same as in the freely propagating rich hydrogen/air flames the onset of pulsations is promoted by pressure increase. The increased strain rate as expected stabilizes the flame for high values of the strain but found to promote the onset of instabilities for moderate values. Because the onset of oscillating flame behavior is extremely sensitive to molecular diffusion and chemical kinetics the outcome of the study can be directly checked in the experiments. The results of the parametric study near the boundary and the properties of both pulsating and steady solutions can be used for additional combustion models validation.References
(1) V. Gubernov, A. Kolobov, A. Polezhaev, H. Sidhu, G. Mercer, Period doubling and chaotic transient in a model of chain-branching combustion wave propagation, Proc. R. Soc. A Math. Phys. Eng. Sci. 466 (2010) 2747-2769. Crossref
(2) V.N. Kurdyumov, V.V. Gubernov, Dynamics of combustion waves in narrow samples of solid energetic material: impact of radiative heat losses on chaotic behavior and dynamical extinction phenomenon, Combust. Flame 219 (2020) 349-358. Crossref
(3) S.B. Margolis, Bifurcation phenomena in burner-stabilized premixed flames, Combust. Sci. Technol. 22 (1980) 143-169. Crossref
(4) B.J. Matkowsky, D.O. Olagunju, Pulsations in a burner-stabilized premixed plane flame, SIAM J. Appl. Math. 40 (1981) 551-562. Crossref
(5) J. Buckmaster, Stability of the porous plug burner flame, SIAM J. Appl. Math. 43 (1983) 1335-1349. Crossref
(6) G. Joulin, Flame oscillations induced by conductive losses to a flat burner, Combust. Flame 46 (1982) 271-281. Crossref
(7) A. McIntosh, On the cellular instability of flames near porous-plug burners, J. Fluid Mech. 161 (1985) 43-75. Crossref
(8) H.G. Kaper, G.K. Leaf, B. Matkowsky, On the stability of the porous plug burner flame, Combust. Sci. Technol. 47 (1986) 93-101. Crossref
(9) B.H. Chao, C.K. Law, Duality, pulsating instability, and product dissociation in burner-stabilized flames, Combust. Sci. Technol. 62 (1988) 211-237. Crossref
(10) V.N. Kurdyumov, M. Matalon, The porous-plug burner: flame stabilization, onset of oscillation, and restabilization, Combust. Flame 153 (2008) 105-118. Crossref
(11) B.H. Chao, Instability of burner-stabilized flames with volumetric heat loss, Combust. Flame 126 (2001) 1476-1488. Crossref
(12) V.N. Kurdyumov, M. Sánchez-Sanz, Influence of radiation losses on the stability of premixed flames on a porous-plug burner, Proc. Combust. Inst. 34 (2013) 989-996. Crossref
(13) S.B. Margolis, Effects of selective diffusion on the stability of burner-stabilized premixed flames, Symp. (Int.) Combust. 18 (1981) 679-693. Crossref
(14) V. Gubernov, V. Bykov, U. Maas, Hydrogen/air burner-stabilized flames at elevated pressures, Combust. Flame 185 (2017) 44-52. Crossref
(15) S. Nechipurenko, T. Miroshnichenko, N. Pestovskii, S. Tskhai, B. Kichatov, V. Gubernov, V. Bykov, U. Maas, Experimental observation of diffusive-thermal oscillations of burner-stabilized methane-air flames, Combust. Flame 213 (2020) 202-210. Crossref
(16) V. Mislavskii, N. Pestovskii, S. Tskhai, B. Kichatov, V. Gubernov, V. Bykov, U. Maas, Diffusive-thermal pulsations of burner-stabilized methane-air flames, Combust. Flame 234 (2021) 111638. Crossref
(17) A. Moroshkina, V. Mislavskii, B. Kichatov, V. Gubernov, V. Bykov, U. Maas, Burner-stabilized flames: towards reliable experiments and modelling of transient combustion, Fuel 332 (2023) 125754. Crossref
(18) A. Moroshkina, E. Yakupov, V. Mislavskii, E. Sereshchenko, A. Polezhaev, S. Minaev, V. Gubernov, V. Bykov, The performance of reaction mechanism in prediction of the characteristics of the diffusive-thermal oscillatory instability of methane-hydrogen-air burner-stabilized flames, Acta Astronaut. 215 (2024) 496-504. Crossref
(19) J.W. Mapp, J.I.B. Jr., M. Gorman, Short communication, Combust. Sci. Technol. 43 (1985) 217-225. Crossref
(20) M. El-Hamdi, M. Gorman, J.W. Mapp, J.I. Blackshear Jr., Stability boundaries of periodic models of propagation in burner-stabilized methane-air flames, Combust. Sci. Technol. 55 (1987) 33-40. Crossref
(21) H. Pearlman, Target and spiral wave patterns in premixed gas combustion, J. Chem. Soc. Faraday Trans. 93 (1997) 2487-2490. Crossref
(22) K. Robbins, M. Gorman, J. Bowers, R. Brockman, Spiral dynamics of pulsating methane-oxygen flames on a circular burner, Chaos 14 (2004) 467-476. Crossref
(23) C.K. Law, Combustion Physics, Cambridge Univ. Press, 2010.
(24) J. Warnatz, U. Maas, R.W. Dibble, Combustion, Springer, 2006.
(25) G. Dixon-Lewis, Structure of laminar flames, Symp. (Int.) Combust. 23 (1991) 305-324. Crossref
(26) M. Smooke, Numerical modeling of the structure and properties of tubular strained laminar premixed flames, Dyn. Deflagr. React. Syst., 131 (1991) 125. Crossref
(27) S. Ishizuka, An experimental study on extinction and stability of tubular flames, Combust. Flame 75 (1989) 367-379. Crossref
(28) H. Kobayashi, M. Kitano, Extinction characteristics of a stretched cylindrical premixed flame, Combust. Flame 76 (1989) 285-295. Crossref
(29) Y. Ogawa, N. Saito, C. Liao, Burner diameter and flammability limit measured by tubular flame burner, Symp. (Int.) Combust. 27 (1998) 3221-3227. Crossref
(30) Korsakova, V. Gubernov, A. Kolobov, V. Bykov, U. Maas, Stability of rich laminar hydrogen-air flames in a model with detailed transport and kinetic mechanisms, Combust. Flame 163 (2016) 478-486. Crossref
(31) V. Bykov, V. Gubernov, U. Maas, Combustion of near stoichiometric hydrogen-air mixtures stabilized near tubular porous burner, Combust. Plasmochem. 20 (2022) 277-278. Crossref
(32) G. Stahl, J. Warnatz, Numerical investigation of time-dependent properties and extinction of strained methane and propane-air flamelets, Combust. Flame 85 (1991) 285-299. Crossref
(33) V. Giovangigli, Mass conservation and singular multicomponent diffusion algorithms, IMPACT Comput. Sci. Eng. 2 (1990) 73-97. Crossref
(34) A. Ern, V. Giovangigli, Multicomponent Transport Algorithms, Springer, 1994. Crossref
(35) U. Maas, J. Warnatz, Ignition processes in hydrogen-oxygen mixtures, Combust. Flame 74 (1988) 53-69. Crossref
(36) P. Deuflhard, E. Hairer, J. Zugck, One-step and extrapolation methods for differential-algebraic systems, Numer. Math. 51 (1987) 501-516. Crossref
(37) P. Deuflhard, U. Nowak, Extrapolation Integrators for Quasilinear Implicit ODEs, Springer, 1987. Crossref
(38) B. Kichatov, A. Kolobov, V. Gubernov, V. Bykov, U. Maas, Combustion of rich hydrogen-air mixture stabilised near a cylindrical porous burner, Combust. Theory Model. 24 (2020) 650-665. Crossref
(39) V. Gubernov, A. Kolobov, V. Bykov, U. Maas, Investigation of rich hydrogen-air deflagrations in models with detailed and reduced kinetic mechanisms, Combust. Flame 168 (2016) 32-38. Crossref
(40) V. Bykov, S. Shashidharan, E. Berszany, V. Gubernov, U. Maas, Model reduction of rich premixed hydrogen/air oscillatory flames by global quasi-linearization (GQL), Combust. Sci. Technol. 194 (2022) 2377-2394. Crossref