Carbon Nanotubes: A Comparative Study of Synthesis Methods and Their Problems

Authors

  • A.R. Kerimkulova Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbai batyr str., Almaty, Kazakhstan
  • A.N. Shyrynbek Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • S.A. Taupikhova Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • N.M. Asanbek Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbai batyr str., Almaty, Kazakhstan
  • Ye.Zh. Yermoldanov Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbai batyr str., Almaty, Kazakhstan
  • A.N. Sabitov Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbai batyr str., Almaty, Kazakhstan https://orcid.org/0000-0003-3677-8685

DOI:

https://doi.org/10.18321/cpc23(1)39-51

Keywords:

carbon nanotubes, chemical vapor deposition, arc discharge, laser ablation, chirality

Abstract

Carbon nanotubes (CNTs) are the backbone of nanotechnology due to their unique structural, electrical and mechanical properties. These nanostructures, which include single-layer (OSUNT) and multilayer (MSUNT) forms, are of great interest in research and industrial applications. The method of synthesis of CNTs plays a key role in their characterisation. The dominant methods for their synthesis are: chemical vapour deposition (CVD), arc discharge and laser ablation. Each technique has unique advantages and disadvantages that affect the quality, yield and scalability of the resulting nanotubes. Recent comparative studies have provided valuable information on optimising these synthesis methods. For example, changes in catalysts, precursor gases and reaction conditions significantly affect the structural integrity and purity of CNTs. This article presents a comparative analysis of these synthesis methods, highlighting key advances, the role of catalysts and the influence of process parameters. Particular attention is given to CVD-based approaches, including floating catalyst and fluidised bed methods, which show promise for large-scale production with controlled morphology. In addition, laser ablation using carbon as precursor can be a cost-effective alternative for high-throughput synthesis of OSUNTs. The aim of the study is to review CNT synthesis methods for various scientific and technological applications.

Author Biography

  • A.N. Sabitov, Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbai batyr str., Almaty, Kazakhstan

    -

References

(1) Gupta N, Gupta SM, Sharma SK (2019) Carbon Lett 29:419-447.

(2) Rahman G, Najaf Z, Mehmood A, Bilal S, Shah AUHA, Mian SA, Ali G (2019) C 5(1):3. Crossref

(3) Shoukat R, Khan MI (2022) Microsyst Technol 28(4):885-901. Crossref

(4) Gacem A, et al. (2022) J Nanomater 2022(1):7238602. Crossref

(5) Alhashmi Alamer F, Almalki GA (2022) Polymers 14(24):5376. Crossref

(6) Ferreira FV, Franceschi W, Menezes BR, Biagioni AF, Coutinho AR, Cividanes LS (2019) Carbon-Based Nanofillers and Their Rubber Nanocomposites:1-45. Crossref

(7) Brady GJ, Way AJ, Safron NS, Evensen HT, Gopalan P, Arnold MS (2016) Sci Adv 2(9):e1601240. Crossref

(8) Cao Y, Cong S, Cao X, Wu F, Liu Q, Amer MR, Zhou C (2019) Single-Walled Carbon Nanotubes: Preparation, Properties and Applications: 189-224.

(9) Zhong D, Zhang Z, Peng LM (2017) Nanotechnology 28(21):212001. Crossref

(10) Soylemez S, Yoon B, Toppare L, Swager TM (2017) ACS Sens 2(8):1123-1127. Crossref

(11) Qiu S, Wu K, Gao B, Li L, Jin H, Li Q (2019) Adv Mater 31(9):1800750. Crossref

(12) Hofferber E, Meier J, Herrera N, Stapleton J, Calkins C, Iverson N (2022) Nanomedicine 40:102489. Crossref

(13) Hendler-Neumark A, Wulf V, Bisker G (2023) ACS Sens 8(10):3713-3722. Crossref

(14) Tang DM, et al. (2024) Nat Rev Electr Eng 1(3):149-162. Crossref

(15) Takakura A, et al. (2019) Nat Commun 10(1): 3040. Crossref

(16) Charoenpakdee J, Suntijitrungruang O, Boonchui S (2020) Sci Rep 10(1):18949. Crossref

(17) Nishihara T, et al. (2022) Nano Lett 22(14):5818–5824. Crossref

(18)Liu D, et al. (2024) Trends Chem 4(4):186-210. Crossref

(19) Lu SXL, Swager TM (2023) Nat Rev Methods Primers 3(1):73. Crossref

(20) Tian W, et al. (2023) J Mol Liq 392:123433. Crossref

(21) Lavagna L, et al. (2021) Mater Today Chem 20:100477. Crossref

(22) Krishna RH, et al. (2023) Appl Surf Sci Adv 16:100431. Crossref

(23) Díez-Pascual AM (2021) Macromolecules 1:64-83. Crossref

(24) Hareesha N, et al. (2021) Colloids Surf A 626:127042. Crossref

(25) Pant M, et al. (2021) Mater Today Proc 46:11250-11253. Crossref

(26) Mohamed AEMA, Mohamed MA (2020) Carbon Nanomaterials for Agri-Food and Environmental Applications: 21-32. Crossref

(27) Rathinavel S, Priyadharshini K, Panda D (2021) Mater Sci Eng B 268:115095. Crossref

(28) Sivamaran V, et al. (2022) Chem Phys Impact 4:100072. Crossref

(29) Novikov IV, et al. (2021) Chem Eng J 420:129869. Crossref

(30) Lin J, et al. (2020) Diam Relat Mater 106:107830. Crossref

(31) Nazhipkyzy M, et al. (2022) Nanomaterials 12(11):1817. Crossref

(32) Smagulova GT, et al. (2020) Eurasian Chem Tech J 22(3):235-239. Crossref

(33) Yahyazadeh A, Nanda S, Dalai AK (2024) Reactions 5(3):429-451. Crossref

(34) Sho ukat R, Khan MI (2021) Microsyst Technol: 1-10. Crossref

(35) Chen S, et al. (2023) Mater Horiz 10(11):5185-5191. Crossref

(36) Chrzanowska J, et al. (2015) Phys Status Solidi B 252(8):1860-1867. Crossref

(37) Ismail RA, et al. (2020) Physica E 119:113997. Crossref

(38) Alamro FS, et al. (2021) Nanomaterials 11(8):2142. Crossref

(39) Sharma S (2022) Mini Rev Org Chem 20:55. Crossref

(40) Arora N, Sharma NN (2014) Diam Relat Mater 50:135-150. Crossref

(41) Mehdi SMZ, et al. (2024) Surf Interfaces 49:104442. Crossref

(42) Zhou G, et al. (2024) Vacuum 225:113198. Crossref

(43) Yermagambet BT, et al. (2021) Solid Fuel Chem 55:380-390.

(44) Yermagambet BT, et al. (2020) Izvestiya NAN RK Seriya Khimii i Tekhnologii 5:126-133. Crossref

Downloads

Published

2025-03-25

How to Cite

Kerimkulova, A., Shyrynbek, A., Taupikhova, S., Asanbek, N., Yermoldanov, Y., & Sabitov, A. (2025). Carbon Nanotubes: A Comparative Study of Synthesis Methods and Their Problems. Combustion and Plasma Chemistry, 23(1), 39-51. https://doi.org/10.18321/cpc23(1)39-51