Efficiency of Electrochemical Sensors Based on Nanomaterials
DOI:
https://doi.org/10.18321/cpc23(1)25-37Keywords:
electrochemical sensors, nanomaterials, carbon nanotubes, graphene, metal nanoparticles, metal oxides, metal-organic frameworks, analytical reliabilityAbstract
Electrochemical sensors are one of the most important technologies in modern analytical chemistry and enable high-precision analyses. In this study, the efficiency of electrochemical sensors based on nanomaterials, as well as their sensitivity, selectivity, detection limit, and stability, were analyzed. The study investigated the analytical capabilities of sensors based on carbon nanotubes (CNTs), graphene, metal nanoparticles (Au, Pt, Ag), metal oxides (ZnO, CuO, Fe3O4), and metal-organic frameworks (MOFs). Nanomaterials play an important role in improving the sensitivity of electrochemical sensors. The large surface area and high conductivity of carbon nanotubes improve the adsorption of analytes on the electrode surface, thus enabling the detection of their low concentrations. The two-dimensional structure of graphene amplifies electrochemical signals and helps to shorten the analysis time. Metal nanoparticles and metal oxides increase the reaction rate and activate redox processes on the electrode surface. The high porosity of MOF structures enables the effective detection of heavy metal ions and organic pollutants. Research results show that the composition of the nanomaterials used in sensor devices significantly affects their sensitivity and stability. Their chemical and structural modification improves the long-term performance of the sensors. In the future, the development of multicomponent hybrid sensors and the optimization of their industrial applications are particularly relevant.
References
(1) Buzanovsky VA (2012) Biomed Khim 58(1):12-31. Crossref
(2) Wang X, Lu D, Liu Y, Wang W, Ren R, Li M, Liu D, Liu Y, Liu Y, Pang G (2022) Biosensors 12:566. Crossref
(3) Majer-Baranyi K, Szekacs A, Adanyi N (2023) Biosensors 13:456. Crossref
(4) French P J, Krijnen G J, Vollebregt S, Mastrangeli M (2021) IEEE Sens J 22:10106-10125. Crossref
(5) Faudzi AAM, Sabzehmeidani Y, Suzumori K (2020) J Robot Mechatron 32:281-288. Crossref
(6) Shanbhag MM, Manasa G, Mascarenhas R J, Mondal K, Shetti NP (2023) Chem Eng J Adv 16:100516. Crossref
(7) Li L, Han L, Hu H, Zhang R (2023) Mater Adv 4:726–746. Crossref
(8) Nag A, Nuthalapati S, Mukhopadhyay SC (2022) IEEE Sens J. Crossref
(9) Malik S, Singh J, Goyat R, et al. (2023) Heliyon. Crossref
(10) Nurazzi N, Sabaruddin F, Harussani M, Kamarudin S, Rayung M, Asyraf M et al. (2021) Nanomaterials 11:2186. Crossref
(11) Ziyatdinova GK, Zhupanova AS, Budnikov GK (2022) J Anal Chem 77(2):129-149. Crossref
(12) Aimashova Zh, Ismailov D (2023) Dokl Nats Akad Nauk Resp Kaz 345(1):96-107. Crossref
(13) John B (2020) In: Nanorods and Nanocomposites, InTech Open: London, UK. Crossref
(14) Shahamirifard SA, Ghaedi M (2019) Biosens Bioelectron 141:111474. Crossref
(15) Yuan F, Xia Y, Lu Q, et al. (2022) Talanta 244:123419. Crossref
(16) Shambilova GK, Baktygalieva TT (2019) Bull Atyrau Univ 52(1):129-135. Crossref
(17) Zhumnazar NN et al. (2021) Bull Natl Nucl Cent Kaz 1:4-8. Crossref
(18) Baranwal J, Barse B, Gatto G, Broncova G, Kumar A (2022) Chemosensors 10(9):363. Crossref
(19) Meti MD, Abbar JC, Lin J, et al. (2021) Mater Chem Phys 266:124538. Crossref
(20) Wen X, Huang Q, Nie D, et al. (2021) Molecules 26:2243. Crossref
(21) Nikiforova AA (2021) Master’s Thesis, Unspecified Institution. URL
(22) Agnihotri AS, Varghese A, Nidhin M (2021) Appl Surf Sci Adv 4:100072. Crossref
(23) Zhumasheva NZ, Kudreeva LK, Kosybayeva DE (2021) Chem Bull KazNU 101(2):28-41. Crossref
(24) Cho G, Azzouzi S, Zucchi G, Lebental B (2021) Sensors 22:218. Crossref
(25) Assirbayeva ZhM, Bakytkarim Y, Mukataeva ZhS, et al. (2024) Bull LN Gumilyov ENU Chem Geogr Ecol Ser 148(3). Crossref
(26) Bakytkarim Y, Tursynbolat S, Mukatayeva, et al. (2023) Combustion and plasma chemistry 21:217-226. Crossref
(27) Bakytkarim Y, Tursynbolat S, Mukatayeva ZhS, et al. (2024) Eng Sci 30:1178. Crossref
(28) Falyouna O, Maamoun I, Bensaida K, et al. (2021) Proc IEICES 7:161-169. Crossref
(29) Stasyuk NY, Gayda GZ, Zakalskiy AE, et al. (2022) Talanta 238:122996. Crossref
(30) Fu L et al. (2022) Chemosphere 297:134127. Crossref
(31) Lahcen AA et al. (2020) Biosens Bioelectron 168:112565. Crossref
(32) Le VT, Vasseghian Y, Dragoi EN, Moradi M, Mousavi Khaneghah A (2021) Food Chem Toxicol 148:111931. Crossref
(33) Kaur G, Kaur A, Kaur H (2021) Polym Plast Technol Mater 60(5):502-519. Crossref
(34) Cheemalapati S, Palanisamy S, Mani V, Chen SM (2013) Talanta 117:297-304. Crossref
(35) Bhardwaj H, Noumani A, Himanshu, Chakravorty S, Solanki PR (2024) Mater Adv. Crossref
(36) Kumar P et al. (2020) Biosens Bioelectron 147:111738. Crossref
(37) Zhou L et al. (2018) TrAC Trends Anal Chem 102:280-289. Crossref
(38) Wang Y, Li Z, Wang J, Li J, Lin Y (2011) TrAC Trends Anal Chem 30(1):91-102. Crossref
(39) Liu Y et al. (2021) Adv Funct Mater 31(35): 2102330. Crossref
(40) Song H, Huo M, Zhou M, et al. (2024) Crit Rev Anal Chem 54(7):1987-2006. Crossref