X-RAY REFLECTOMETRY OF THIN YSZ FILMS DEPOSITED ON SI100 SUBSTRATE BY PULSED LASER DEPOSITION

Authors

  • R.E. Beisenov Рhysical-Technical Institute, Almaty, Kazakhstan
  • А.G. Umirzakov Рhysical-Technical Institute, Almaty, Kazakhstan
  • А.L. Mereke Рhysical-Technical Institute, Almaty, Kazakhstan
  • B.Zh. Seitov Kazakh-British Technical University, Almaty, Kazakhstan
  • N.B. Beisenkhanov Kazakh-British Technical University, Almaty
  • K.Kh. Nusupov Рhysical-Тechnical Institute, Almaty, Kazakhstan; Kazakh-British Technical University, Almaty, Kazakhstan

Keywords:

zirconium dioxide,, yttriya oxide,, deposition,, thin films,, X-ray reflectometry

Abstract

The deposition of thin layers of YSZ on Si (100) was carried out on the installation of pulsed laser deposition «PVD». YSZ films deposited at 550, 600, 650, 700, 800 °C temperature, UV excimer laser energy 237 mJ, 10 Hz frequency for 60 minutes. Measurement of thickness, density and roughness of the YSZ deposited films were study by X-ray reflectometry on multi-functional X-ray ComplexRayC6, designed for diagnostics of thin films and nanostructures. X-ray reflectometry data modeling was carried out by using specialized Henke and Release program. Estimated YSZ film’s density after annealing at 550 °C for 60 minutes. YSZ film density is 5.637 g/cm3, and it is an intermediate value between the densities of Y2O3 5.01 g/cm3 and ZrO2 to 5.68 g/cm3. The thickness of the YSZ film after annealing at 550 °C for 60 minutes was equal to 177 nm. At 700-800 °C temperature the thickness range of films from 140 to 200 nm and it is not depend on the substrate temperature where deposition time is 60 minutes and a laser frequency is 20 Hz. It is found that the density of the films is also different for all samples the values are between 5.6 - 6.0 g/cm3. X-ray diffraction of the zirconium dioxide film which stabilized by 8 % yttrium oxide showed the presence of monoclinic line (2θ = 27.946°) and tetragonal (2θ = 33.1°, 48.1° and 57.2°) of zirconium dioxide.

References

(1) Wang, M.Q., & Huang, H.S. (1999). A full fuel-cycle analysis of energy and emissions impacts of transportation fuels produced from natural gas. Retrieved from www.transportation.anl.gov/pdfs/TA/13.pdf.

(2) Lynd, L.R., Cushman, J.H., Nichols, R.J., & Wyman, C.E. (1991). Fuel ethanol from cellulosic biomass. Science, 25, 1318-1323.

(3) Kordesch, K.V., & Simader, G.R. (1995). Environmental impact of fuel cell technology. Chemical Reviews, 95(1), 191–207.

(4) Park, E.W., Moon, H., Park, M.S., & Hyun, S.H. (2009). Fabrication and characterization of Cu–Ni–YSZ SOFC anodes for direct use of methane via Cu-electroplating. International Journal of Hydrogen Energy, 34, 5537–5545.

(5) Габелков, С.В., Тарасов, Р.В., Полтавцев, Н.С., Логвинков, Д.С., & Миронова, А.Г. (2004). Фазовые превращения при нанокристаллизации аморфного оксида циркония. Вопросы атомной науки и техники, 3.

(6) Кучук, И.С., & Альмяшева, О.В. (2012). Структурные превращения в нанокомпозите ZrO2 - Al2O3 в процессе термической обработки. НАНОСИСТЕМЫ: ФИЗИКА, ХИМИЯ, МАТЕМАТИКА, 3(3), 123-129.

(7) Королёв, П.В., Князев, А.В., Гаврилов, И.Р., Гаврилов, М.Р., & Королёв, А.В. (2012). Рентгеновское и калориметрическое исследование порошковых нанокристаллических систем на основе ZrO2(Y) и Al2O3 со вторым нерастворимым компонентом. Физика твердого тела, 54(2).

(8) Mukai, T., Fujita, T., Tsukui, S., Yoshida, K., Adachi, M., & Goretta, K. (2015). Effect of rate on pulsed laser deposition of yttria-stabilized zirconia electrolyte thin films for SOFCs. Journal of Fuel Cell Science and Technology, 12(3), 31002.

Downloads

Published

2016-09-25

How to Cite

Beisenov, R., Umirzakov А., Mereke А., Seitov, B., Beisenkhanov, N., & Nusupov, K. (2016). X-RAY REFLECTOMETRY OF THIN YSZ FILMS DEPOSITED ON SI100 SUBSTRATE BY PULSED LASER DEPOSITION. Combustion and Plasma Chemistry, 14(3), 219-225. https://cpc-journal.kz/index.php/cpcj/article/view/514