ZEOLITE-BASED CATALYSTS FOR SYNTHESIS OF CARBON NANOTUBES

Authors

  • G.T. Smagulova Institute of Combustion Problems, 172 Bogenbaybatyr str. Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71al - Farabi av., Almaty, Kazakhstan
  • N.G. Prikhod’ko Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan; Almaty University of Energetic and Communications, 126, Baitursynov str. Almaty, Kazakhstan
  • N.R. Guseinov Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan; National Nanotechnology Laboratory of Open Type, 71, al-Farabi av., Almaty, Kazakhstan
  • R. Nemkayeva Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan; National Nanotechnology Laboratory of Open Type, 71al-Farabi av., Almaty, Kazakhstan
  • B.T. Lesbayev Институт проблем горения, 050012, ул. Богенбай батыра, 172, Алматы, Казахстан; Казахский национальный университет им. аль-Фараби, пр. аль-Фараби, 71, Алматы, Казахстан
  • Zakhidov Zakhidov University of Texas at Dallas, 800 W Campbell Rd, RL10, Richardson, TX 75080

Keywords:

catalyst,, zeolite,, self-propagating surface thermosynthesis,, carbon nanotube

Abstract

Supported transition-metal catalysts were prepared on zeolite by self-propagating high-temperature synthesis method and were tested upon receipt of carbon nanotubes by CVD. The effectiveness of zeolite as matrix for catalysts in chemical vapor deposition synthesis of multiwall carbon nanotubes is is presented here. Obtaining of carbon nanotubes on zeolite-based catalysts was characterized by the transmission and scanning electron microscopy as well as Raman spectroscopy. For catalyst of zeolite-Co3O4 the carbon nanotubes have a diameter of 11 nm. For catalyst of zeolite-Fe2O3 the carbon nanotubes have a diameter from 7 to 21 nm. Raman spectrum indicates at low defectiveness of obtained carbon nanotubes.

References

(1) Forró, L., & Schönenberger, Ch. (2001). Carbon nanotubes: Smart material of the future. Europhys. News, 32(3), 86-90.

(2) Riemenschneider, J., Mahrholz, T., Mosch, J., Monner, H.P., & Melcher, J. (2005). Carbon nanotubes - smart material of the future: Experimental investigation of the system response. In II Eccomas Thematic Conference on Smart Structures and Materials: Materials and Processes, July 18-21, Lisbon, Portugal.

(3) De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., & Hart, A.J. (2013). Carbon nanotubes: A review of their properties and applications. Science, 339, 535-550.

(4) Baughman, R.H., Zakhidov, A.A., & de Heer, W.A. (2002). Carbon nanotubes: The route toward applications. Science, 297, 787-792.

(5) Mansurov, Z.A., Shabanova, T.A., & Mofa, N.N. (2012). Synthesis and technologies of nanostructured materials. Almaty: Kazak University. (in Russian).

(6) Huynh, C.P., & Hawkins, S.C. (2010). Carbon nanotubes: Properties and applications. Carbon, 48, 1105–1115.

(7) Abdel-Fattah, T., Siochi, E.J., & Crooks, R.E. (2006). Fullerenes, nanotubes, and carbon nanostructures. Fullerenes, Nanotubes, and Carbon Nanostructures, 14, 585–594.

(8) Tkach, V.S., & Suslov, D.S. (2011). Catalysts based on transition metal complexes: Actual problems and examples of effective determination. Irkutsk: Irkutsk State University. (in Russian).

(9) Aldashukurova, G.B., Mironenko, A.V., Mansurov, Z.A., Shikina, N.V., Yashnik, S.A., Kuznetsov, V.V., & Ismagilov, Z.R. (2013). Journal of Energy Chemistry, 22, 811–818.

(10) Yellampalli, S. (Ed.). (2011). Carbon Nanotubes – Synthesis, Characterization, Application. InTech.

(11) Mansurov, Z.A., Prikhod’ko, N.G., & Savel’yev, A.V. (2012). Formation of PAHs, fullerenes, carbon nanotubes, and soot in combustion processes. Kazakh University, Almaty. (in Russian).

(12) Baytinger, E.M., Kovalev, I.N., Vekesser, N.A., Ryabkov, Yu.I., & Viktorov, V.V. (2013). Chemical Bulletin of Kazakh National University, 1(69), 96–102.

Downloads

Published

2016-06-20

How to Cite

Smagulova, G., Prikhod’ko, N., Guseinov, N., Nemkayeva, R., Lesbayev, B., & Zakhidov, Z. (2016). ZEOLITE-BASED CATALYSTS FOR SYNTHESIS OF CARBON NANOTUBES. Combustion and Plasma Chemistry, 14(2), 83-88. https://cpc-journal.kz/index.php/cpcj/article/view/490

Most read articles by the same author(s)

1 2 3 > >>