The effect of the addition of vapors of organophosphorus compounds with different chemical structures in the flame of a methane-air mixture

Authors

  • A.G Shmakov Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, str. Institutskaya, 3, Novosibirsk, Russia
  • T.A Bolshova Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, str. Institutskaya, 3, Novosibirsk, Russia

DOI:

https://doi.org/10.18321/cpc22(4)319-329

Keywords:

methane, organophosphorus compounds, inhibition, flame structure, detailed chemical-kinetic mechanism

Abstract

The mechanism of the inhibiting effect of flame retardants in various flames is of interest from the point of view of developing effective methods for reducing the flammability of polymers. Currently, there are a large number of flame retardants, among which phosphorus-containing compounds are considered to be one of the most promising. Using the method of probe molecular beam mass spectrometry, the influence of three different organophosphorus compounds (OPC) – trimethyl phosphate (TMP), dimethyl methylphosphonate (DMMP), and dimethyl phosphoramidate (DMPA) – on the chemical structure of a rich (φ=1.2) premixed CH4/O2/N2 flame was studied. Numerical simulation methods were used to calculate the concentration profiles of stable substances, as well as labile compounds – H atoms and OH radicals in flames with additives of TMP and DMMP. It was experimentally found that the DMPA transformation zone is located in a lower temperature zone of the flame than the transformation zones of TMP and DMMP. It is shown that the effect of the addition of three different OPCs at a concentration of 0.02% in the CH4/O2/N2 mixture on the reduction of the maximum concentrations of H atoms and OH radicals in the combustion zone is practically the same, which confirms the previously obtained conclusions about the determining influence of phosphorus in the molecules of the studied inhibitors on their effectiveness. For further analysis of the synergistic effect of P-N in flame retardants from the class of phosphoramidates, the simplest representative of which is DMPA, it is necessary to study the kinetics of chemical reactions of the transformation of these compounds in the flame involving atoms and radicals.

References

(1). Gaan S, Rupper P, Salimova V, Heuberger M, Rabe S, Vogel F (2009) Polym Degrad Stab 94:1125-1134. https://doi.org/10.1016/j.polymdegradstab.2009.03.017

(2). Neisius M, Liang S, Mispreuve H, Gaan S (2013) Ind Eng Chem Res 52:9752-9762. https://doi.org/10.1021/ie400914u

(3). Salmeia KA, Flaig F, Rentsch D, Gaan S (2018) Polymers 10:740. https://doi.org/10.3390/polym10070740

(4). Lu Y, Tang Q, Yang Y, Diao S, Xiang L, Zhang G. (2024) Cellulose 31:2635-2650. https://doi.org/10.1007/s10570-023-05728-1

(5). Liu Y, Zhou L, Ding F, Li S, Li R, Li Z, Huang D and Ren X (2021) J Ind Text 51(3):396-408. https://doi.org/10.1177/1528083719881816

(6). Liang S, Hemberger P, Levalois-Grutzmacher J, Grutzmacher H, Gaan S (2017) Chem Eur J 23:5595-5601. https://doi.org/10.1002/chem.201700402

(7). Liang S, Hemberger P, Neisius NM, Bodi A, Grutzmacher H, Levalois-Grutzmacher J, Gaan S (2015) Chem Eur J 21:1073-1080. https://doi.org/10.1002/chem.201404271

(8). Liang S, Hemberger P, Steglich M, Simonetti P, Levalois-Grützmacher J, Grützmacher H, Gaan S (2020) Chem Eur J 26:10795-10800. https://doi.org/10.1002/chem.202001388

(9). Nguyen C, Kim J (2008) Polym Degrad Stab 93(6):1037-1043. https://doi.org/10.1016/j.polymdegradstab.2008.03.024

(10). Nguyen T-M, Chang S, Condon B, Slopek R, Graves E, Yoshioka-Tarver M (2013) Ind Eng Chem Res 52:4715-4724. https://doi.org/10.1021/ie400180f

(11). Gaan S, Sun G (2007) J Anal Appl Pyrolysis 78(2):371-377. https://doi.org/10.1016/j.jaap.2006.09.010

(12). Pearce EM, Khanna YP, Raucher D (1981). Thermal Analysis of Polymer Flammability in Thermal Characterization of Polymeric Materials. Turi EA, Ed. Academic Press, Orlando, FL, P. 793-843.

(13). Wang FC-Y (2000) J Chromatogr A 886:225-235. https://doi.org/10.1016/S0021-9673(00)00538-0

(14). Luijk R, Govers HAJ, Eijkel GB, Boon J (1991) J Anal Appl Pyrolysis 20:303-319. https://doi.org/10.1016/0165-2370(91)80079-N

(15). Barontini F, Marsanich K, Cozzani VJ (2004) Therm Anal Colorim 78:599-619. https://doi.org/10.1023/B:JTAN.0000046122.00243.ed

(16). Siow JE, Laurendeau NM (2004) Combust Flame 136:16-24. https://doi.org/10.1016/j.combustflame.2003.08.010

(17). Hastie JW, Bonell DW. Molecular chemistry of inhibited combustion systems. National Bureau of Standards Report. 1980.– NBSIR 80-2169.

(18). Jayaweera TM (2002) Flame suppression by aqueous solutions: Ph.D. thesis / Tina Melissa Jayaweera. – Cornell University, USA. – 412 P.

(19). Shmakov AG, Korobeinichev OP, Shvartsberg VM, Knyazkov DA, Bolshova TA, Rybitskaya IV (2005) Proc Combust Inst 30:2345-2352. https://doi.org/10.1016/j.proci.2004.07.003

(20). Mache H, Hebra (1941) Sitzungsber. Osterreich, Akad. Wiss. IIa:150-157. https://www.zobodat.at/pdf/SBAWW_150_2a_0157-0174.pdf

(21). Shmakov AG, Shvartsberg VM, Korobeinichev OP, Beach MW, Hu TI, Morgan TA (2007) Combust Flame 149:384-391. https://doi.org/10.1016/j.combustflame.2007.03.002

(22). Wang H, You X, Joshi AV, Davis SG, Laskin A, Egolfopoulos F, Law CK. USC Mech Version II. http://ignis.usc.edu/USC_Mech_II.htm, May 2007.

(23). Jayaweera TM, Melius CF, Pitz WJ, Westbrook CK, Korobeinichev OP, Shvartsberg VM, Shmakov AG, Rybitskaya IV, Curran HJ (2005) Combust Flame 140:103-115. https://doi.org/10.1016/j.combustflame.2004.11.001

(24). Li W, Jiang Y, Jin Y, Zhu X (2019) Fuel 235:1294-1300. https://doi.org/10.1016/j.fuel.2018.08.099

(25). Zel’dovich YaB., Barenblatt GI, Librovich VB and Makhviladze GM. Mathematical Theory of Combustion and Explosion, Nauka, Moscow, 1980.

(26). Knyazkov DA, Bolshova TA, Dmitriev AM, Shmakov AG, Korobeinichev OP (2017) Combust Explos Shock Waves 53:388-397. https://doi.org/10.1134/S0010508217040025

(27). Hemelsoet K, Van Durme F, Van Speybroeck V, Reyniers M-F, and Waroquier M (2010) J Phys Chem A 114:2864-2873. https://doi.org/10.1021/jp908502d

(28). Jiao P, Zheng W, Guan Z, He L, Zhang C, Tang J (2024) J Indian Chem Soc 101:01114. https://doi.org/10.1016/j.jics.2023.101114

(29). Werner JH, Cool TA (1999) Combust Flame 117:78-98. https://doi.org/10.1016/S0010-2180(98)00101-1

(30). Jiang W, Jin F.-L, Park S.-J. (2015) J Ind Eng Chem. 27:40-43. https://doi.org/10.1016/j.jiec.2015.01.010

(31). Jiang J, Li J, Hu J, Fan D (2010) Constr Build Mater 24(12):2633-2637. https://doi.org/10.1016/j.conbuildmat.2010.04.064

(32). Qian X, Song L, Bihe Y, Yu B, Shi Y, Hu Y, Yuen RKK (2014) Mater Chem Phys 143(3):1243-1252. https://doi.org/10.1016/j.matchemphys.2013.11.029

(33). Nogueira MF, Fisher EM (2003) Combust Flame 132:352-363. https://doi.org/10.1016/S0010-2180(02)00464-9

(34). Korobeinichev OP, Ilyin SB, Bolshova TA, Shvartsberg VM, Chernov AA. (2000) Combust Flame 121:593-609. https://doi.org/10.1016/S0010-2180(99)00171-6

(35). Korobeinichev OP, Ilyin SB, Mokrushin VV, Shmakov AG. (1996) Combust Sci Technol 116:51-67. https://doi.org/10.1080/00102209608935543

Downloads

Published

2024-12-24

How to Cite

Shmakov, A., & Bolshova, T. (2024). The effect of the addition of vapors of organophosphorus compounds with different chemical structures in the flame of a methane-air mixture. Combustion and Plasma Chemistry, 22(4), 319-329. https://doi.org/10.18321/cpc22(4)319-329