Physical and chemical characteristics and activity of nickel-modified cobalt-iron-containing catalysts in the reaction of dry reforming of methane

Authors

  • L.K. Myltykbayeva Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • K. Dossumov Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • G.Y Yergaziyeva Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc22(3)187-196

Keywords:

greenhouse gas, methane, carbon dioxide, oxide catalysts, dry reforming of methane

Abstract

In the process of dry reforming of methane (DRM), the activity of low-percentage catalysts based on cobalt and iron oxides and their modification with nickel oxide was studied. It has been established that the addition of nickel oxide into the Fe2O3/γ-Al2O3 catalyst increases the degree of methane conversion from 14 to 89%, and also increases the yield of target reaction products H2 to 43.0 vol.%, CO to 46.1 vol.% at 850 °C. On a Co3О4-NiО/γ-Al2O3 catalyst at 850 °C, methane conversion reaches to 88.1%, the yield of H2 and CO is 44.8%. TPR-H2 analyzes showed that the introduction of nickel oxide into Fe2O3/γ-Al2O3 composition, in contrast to the Co3O4/γ-Al2O3 catalyst, the temperature peaks of Fe2O3-NiО/γ-Al2O3, reduction shift towards lower temperatures and weaken the interaction of metals with the support - γ-Al2O3 and thereby the amount of active reduced particles of iron and nickel oxides increases, which ensures good catalytic activity of Fe2O3-NiО/γ-Al2O3. According to the XRD results, spinel-like form - NiFe2O4, NiAl2O4 and CoAl2O4, also phase as Fe2O3 were obtained on the Fe2O3-NiО/γ-Al2O3 catalyst. This indicates that the developed catalysts form new phases that are active at high temperatures to produce synthesis gas in reduction-oxidation processes during the DRM reaction.

References

(1). Babalola AO, Olusegun ST, Samuel ES, Victor OO (2023) Materials Today Communications 36:1-14. Crossref

(2). Zhu X, Huo P, Zhang YP, Cheng DG, Liu CJ (2008) Appl. Catal. B: Environ 81:132-140. Crossref

(3). Kathiraser Y, Thitsartarn W, Sutthiumporn K, Kawi S (2013) 117:8120-8130. Crossref

(4). Rostrup-Nielsen JR, Sehested J, Norskov JR (2002) Adv. Catal 47:65-139. Crossref

(5). Pechimuthu NA, Pant KK, Dhingra SC, Bhalla R (2006) 45:7435-7443. Crossref

(6). Khani Y, Shariatinia Z, Bahadoran F (2016) 299:353-366. Crossref

(7). Sumrunronnasak S, Tantayanon S, Kiatgamolchai S and Sukonket T (2016) Int. J. Hydrogen Ener 41:2621-2630. Crossref

(8). Charisiou ND, Siakavelas G, Papageridis KN, Baklavaridis A, Tzounis L, Avraam DG, Goula MA (2016) J. Nat. Gas Sci. Eng 31:164-183. Crossref

(9). Daniel GA, Diana GA, Gómez-Cortés A, Díaz G (2021) Catal. Today 360:46-56. Crossref

(10). Androulakis A, Yentekakis IV, Panagiotopoulou P (2023) Int. J. Hydrogen Ener 48:33886-33902. Crossref

(11). Mekkering MJ, Biemolt J, Graaf Jeen de, Lin Yi-An, Leest NP, Troglia A, Bliem R, Bas de B, Rothenberg G, Yan N (2023) Catal Sci Technol. 13:2255-2260. Crossref

(12). Dossumov K, Ergazieva GE, Ermagambet BT, Telbayeva MM, Mambetova MM, Myltykbayeva LK, Kassenova ZM (2020) Chemical Papers 74:373-388. Crossref

(13). Dossumov K, Ergazieva GE, Myltykbaeva L K, Telbaeva MM, Batyrbaev AT (2019) Theoretical and Experimental Chemistry 55:124-128. Crossref

(14). Dossumov K, Churina DKh, Ergazieva GE, Ermagambet BT (2019) Oil and Gas 5:49-73.

(15). Yergaziyeva GY, Kutelia E, Dossumov K, Gventsadze D, Jalabadze N, Dzigrashvili T, Mambetova MM, Anissova MM, Nadaraia L, Tsurtsumia O, Eristavi B (2023) Combustion and plasma chemistry 21:89-97. Crossref

(16). Al-Fatesh AS, Ashraf A, Ahmed AI, Wasim UKh, Soliman MA, AL-Otaibi RL, Fakeeha AH (2016) Catalysts 6:1-15. Crossref

(17). Kim TY, Jo SB, Woo JH, Lee JH, Dhanusuraman R, Lee SC, Kim JC (2021) Catalysts 11:105. Crossref

(18). Liu Q, Wang J, An K, Zhang S, Liu G, Liu Y (2020) Energy Technol 8:200-205. Crossref

(19). Hwang S (2013) Journal of Industrial and Engineering Chemistry 19:698-703. Crossref

(20). Zeng Sh, Zhang L, Zhang X, Wang Y, Pan H, Su H (2012) Int. J. Hydrogen Energy 37:9994-10001. Crossref

(21). Yahi N, Menad S, Rodríguez-Ramos I (2015) Green Process Synth 4:479-486. Crossref

(22). Tsoukalou A, Imtiaz Q, Kim SM, Abdala PM, Yoon S, Müller CR (2016) Journal of Catalysis 343:208-214. Crossref

(23). Dhillon GS (2021) Doctoral Dissertations: 178. URL

(24). Manabayeva AM, Mäki-Arvela P, Vajglová Z, Martinéz-Klimov M, Tirri T, Baizhumanova TS, Grigor’eva V.P, Zhumabek M, Aubakirov YA, Simakova IL, Murzin DYu, Tungatarovа SA (2023) Ind. Eng. Chem. Res 62:11439-11455. Crossref

(25). Myltykbayeva LK, Ergazieva GE, Telbayeva MM, Ismagilov ZR, Dossumov K, Popova АN, Sozynov SА, Turgumbayeva RH, Hitsova LM (2020) Eurasian Chem.-Technol. J 22:187-195. Crossref

(26). Al-Fatesh A, Abu-Dahrieh J, Atia H, Armbruster U, Ibrahim AA, Khan W, Abasaeed A, Fakeeha AH (2019) Int. J. Hydrogen Energy 44: 21546-21558. Crossref

(27). Yung MM, Holmgreen EM, Ozkan US (2007) J. Catal. 247:356-367. Crossref

(28). Dossumov K, Ergazieva GЕ, Ermagambet BT, Myltykbaeva LK, Telbaeva MM, Mironenko AV, Mambetova MM, Kasenova G (2020) Russian Journal of Physical Chemistry A 94:880-882. Crossref

(29). Ali S, Mohd Zabidi N, Subbarao D (2011) Chem. Cent. J. 5:68. Crossref

(30). Pengpanich S, Meeyoo V, Rirksomboon T (2004) Catal. Today 93:95-105. Crossref

(31). Savostyanov AP, Yakovenko RE, Narochny GB, Bakun VG, Sulima SI, Yakuba ES, Mitchenko SA (2017) Kinetics and Catalysis 58:1-11. Crossref

(32). Kim T-Y, Jo S, Lee Y, Kang S-H, Kim J-W, Lee S-Ch, Kim J-C (2021) Catalysts 11:697. Crossref

(33). Zhang J, Jin L, Li Y, Hu H (2013) Int. J. Hydrogen Energy 38:3937-3947. Crossref

(34). Wang L, Li D, Koike M, Koso S, Nakagawa Y, Xu Y, Tomishige K (2011) Appl. Catal. A Gen 392:248-255. Crossref

(35). Giecko G, Borowiecki T, Gac W, Kruk J (2008) Catal. Today 137:403-409. Crossref

(36). Meng F, Zhong P, Li Zh, Cui X, Zheng H (2014) Journal of Chemistry 58:7. Crossref

(37). Li T, Wang H, Yang Y, Xiang H, Li Y (2014) Fuel Process.Technol 118:117-124. Crossref

(38). Zhou L, Enakonda LR, Harb M, Saih Y, Aguilar-Tapia A, Ould-Chikh S, Hazemann J, Li J, Wei N, Gary D, Del-Gallo P, Jean-Marie (2017) Applied Catalysis B: Environmental 208:44-59. Crossref

(39). Gonzalez JJ, Da Costa-Serra JF, Chica A (2020) Int J Hydrogen Energy 45:20568-20581. Crossref

(40). Yergaziyeva G, Makayeva N, Anissova M, Dossumov K, Mambetova M, Shaimerden Z, Niyazbaeva A, Akkazin E (2022) Eurasian Chem. Technol. J 24:221-227. Crossref

(41). Wang N, Sun ZJ, Wang YZ, Gao XQ, Zhao YX (2011) Journal of Fuel Chemistry and Technology 39:219-223. Crossref

(42). Soleymani M, Edrissi M (2016) Bulletin of Materials Science 39:487-490. Crossref

(43). Grabchenko M, Pantaleo G, Puleo F, Kharlamova TS, Zaikovskii VI, Vodyanki O, Liotta LF (2021) Catal. Today 382:71-81. Crossref

Downloads

Published

2024-10-20

How to Cite

Myltykbayeva, L., Dossumov, K., & Yergaziyeva, G. (2024). Physical and chemical characteristics and activity of nickel-modified cobalt-iron-containing catalysts in the reaction of dry reforming of methane. Combustion and Plasma Chemistry, 22(3), 187-196. https://doi.org/10.18321/cpc22(3)187-196

Most read articles by the same author(s)