Modeling the movement of nutrients in the porous structure of a biocarcass based on calcium hydroxyapatite

Authors

  • Ch. Daulbaev Institute of Combustion Problems, Bogenbai batyr str., 172, Almaty, Kazakhstan; Al-Farabi kazakh national university, ave. Al-Farabi 71, Almaty, Kazakhstan
  • S.Y. Serovaysky Al-Farabi Kazakh National University, Al-Farabi ave. 71, Almaty, Kazakhstan
  • Z.A. Mansurov Institute of Combustion Problems, Bogenbai batyr str., 172, Almaty, Kazakhstan; Al-Farabi kazakh national university, ave. Al-Farabi 71, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc331

Keywords:

Calcium hydroxyapatite, Darcy’s law, porous structures.

Abstract

The article is devoted to the study of the movement of nutrients in the porous structure of a biological framework based on calcium hydroxyapatite. The basis for the mathematical model was Darcy’s law. As the scaffolds under study, we selected three-dimensional porous structures obtained by 3D printing, which consisted of a biologically soluble polymer and calcium hydroxyapatite. Mathematical calculations were carried out and optimal parameters were determined such as: frame rotation speed, porosity and pore size of calcium hydroxyapatite.

References

(1). Darcy Henry Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’ea Les fontaines. Publiques de la ville de Dijon 18 (1856) 647.

(2). Combarnous, M.A., Bories S.A. Hydrothermal convection in saturated porous media. Advances in Hydroscience 10 (1975) 231-307. Crossref

(3). Nakayama, A., Pop, I. A unified similarity transformation for free, forced and mixed convection in Darcy and non-Darcy porous media. Int. J. Heat Mass Tranifer. 34 (1991) 357-367. Crossref

(4). Nakayama A., Kokudai T., Koyama H. An integral treatment for non-Darcy free convection over a vertical flat plate and cone embedded in a fluid-saturated porous medium. Wiirme-und Stoffubertragung 23 (1988) 337-341. Crossref

(5). Dharmadhikari R.V., Kale D.D. Flow of non-Newtonian fluids through porous media. Chem. Engg. Sci. 40 (1985) 527-529. Crossref

(6). Daulbayev C., Mitchell G., Zakhidov A., Sultanov F., Mansurov Z. Obtaining of biologically soluble membranes based on polymeric nanofibres and hydroxyapatite of calcium. Eurasian Chemico-Technological Journal 20 (2) (2018) 119-124. Crossref

(7). Torrent-Burgues J. Continuous Precipitation of Hydroxyapatite from Ca/Citrate/Phosphate Solutions using Microwave Heating. Cryst. Res. Technol. 34 (1999) 757–762. Crossref

(8). M. Sadat-Shojai Preparation of Hydroxyapatite Nanoparticles: Comparison between Hydrothermal and Solvo-Treatment Processes and Colloidal Stability of Produced Nanoparticles in a Dilute Experimental Dental Adhesive. J. Iran. Chem. Soc. 6 (2009) 386-392. Crossref

(9). Earl J.S. Hydrothermal synthesis of hydroxyapatite. Journal of Physics: Conference Series 26 (2006) 268–271. Crossref

(10). Cox S.C., Thornby J.A., Gibbons G.J., Williams M.A., Mallick K.K. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater. Sci. Eng. C 47 (2015) 237–247. Crossref

(11). Do A.V., Khorsand B., Geary S.M., Salem A.K. 3D printing of scaffolds for tissue regeneration applications. Adv. Healthcare Mater. 4 (2015) 1742–1762. Crossref

(12). Doraiswamy A., Narayan R.J., Harris M.L., Qadri S.B., Modi R., Chrisey D.B. Laser microfabrication of hydroxyapatite-osteoblast-like cell composites. J. Biomed. Mater. Res. 80 (2007) 635–643. Crossref

(13). Duan B., Wang M., Zhou W.Y., Cheung W.L., Li Z.Y., Lu W.W. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 6 (2010) 4495–4505. Crossref

(14). Duque G., Rivas D. Alendronate has an anabolic effect on bone through the differentiation of mesenchymal stem cells. J. Bone Miner. Res. 22 (2007) 1603–1611. Crossref

(15). Ehrler D.M., Vaccaro A.R. The use of allograft bone in lumbar spine surgery. Clin. Orthop. Relat. Res. 371 (2000) 38–45. Crossref

(16). Eosoly S., Brabazon D., Lohfeld S., Looney L. Selective laser sintering of hydroxyapatite/polyepsilon-caprolactone scaffolds. Acta Biomater. 6 (2010) 2511–2517. Crossref

(17). Kim I., Elghobashi S., Sirignano W. A. On the equation for spherical-particle motion:effect of Reynolds and acceleration numbers. J. Fluid Mech. 367 (1998) 221–253. Crossref

(18). Zia S., Mozafari M., Natasha G., Tan A., Cui Z., Seifalian A.M. Hearts beating through decellularized scaffolds: whole-organ engineering for cardiac regeneration and transplantation. Crit. Rev. Biotechnol. 36 (2016) 705-715. Crossref

(19). Joseph J. Pearson, Nicholas Gerken, Chunsik Bae, Kyu-Bok Lee Arpan Satsangi. In vivo hydroxyapatite scaffold performance in infected bone defects. Journal of Biomedical Materials Research Part B Applied Biomaterials 10 (2019) 1-10.

Downloads

Published

2019-12-30

How to Cite

Daulbaev, C., Serovaysky, S., & Mansurov, Z. (2019). Modeling the movement of nutrients in the porous structure of a biocarcass based on calcium hydroxyapatite. Combustion and Plasma Chemistry, 17(4), 203-208. https://doi.org/10.18321/cpc331