Углекислотная конверсия этанола на основе медного катализатора
DOI:
https://doi.org/10.18321/cpc23(4)411-422Ключевые слова:
этанол, синтез-газ, этилен, углекислотная конверсия этанола, катализатор на основе медиАннотация
В данной статье исследована каталитическая активность оксида меди, нанесенного на носители 5А, HZSM- 5, Al2O3, SiO2 в реакции углекислотной конверсии этанола. По результатам исследования показано, что образование газов Н2, СО, С2Н4 и СН4 в продуктах реакции зависит от температуры реакции и каталитической активности катализатора. 3%CuO/Al2O3 катализатор проявил активность для получения синтез газа при Т = 800 °С, для получения этилена при Т = 550 °С 5%CuO/SiO2 катализатор проявил активность. 20,6 об.% H2 и 37,5 об.% CO образуется на катализаторе 3%CuO/Al2O3. С целью повышения концентрации этилена было изучено влияние концентрации меди, нанесенной на носитель SiO2 в процессе УКЭ. Согласно полученным данным, на катализаторе 5%CuO/SiO2 концентрация этилена увеличилась до 35 об.%. Каталитическая активность подтверждается пиками на ТПВ-профиле, согласно которым восстановление CuO до Cu⁰ в катализаторе 5%CuO/SiO2 происходит легче и при более низких температурах по сравнению с другими катализаторами. Восстановление оксидов до металлов при низких температурах на поверхности катализатора позволяет повысить каталитическую активность катализатора.
Библиографические ссылки
(1) D.A. Quintero-Coronel, A. Salazar, O.R. Pupo-Roncallo, et al. Assessment of the interchangeability of coal-biomass syngas with natural gas for atmospheric burners and high-pressure combustion applications, Energy 276 (2023) 127551. Crossref
(2) M.B. Bahari, N.-H.H. Phuc, B. Abdullah, et al. Ethanol dry reforming for syngas production over Ce-promoted Ni/Al₂O₃ catalyst, J. Environ. Chem. Eng. 4 (2016) 4830-4838. Crossref
(3) I. Adanez-Rubio, F. García-Lабiano, A. Abad, et al. Synthesis gas and H₂ production by chemical looping reforming using bio-oil from fast pyrolysis of wood as raw material, Chem. Eng. J. 431 (2022) 133376. Crossref
(4) M. Mambetova, M. Anissova, L. Myltykbayeva, et al. Catalyst development for dry reforming of methane and ethanol into syngas: Recent advances and perspectives. Appl. Sci. 15 (2025) 10722. Crossref
(5) Y. Huang, B. Wang, H. Yuan, et al. The catalytic dehydrogenation of ethanol by heterogeneous catalysts, Catal. Sci. Technol. 11 (2021) 1652-1664. Crossref
(6) N. Xiang, S. Li, C. Shu, et al. Dynamic material flow analysis of Chinese ethylene production processes and optimal pathway exploration with potential environmental-economic impacts, J. Clean. Prod. 392 (2023) 136282. Crossref
(7) Y. Hao, D. Zhao, Y. Zhou, et al. Hierarchical leaf-like alumina-carbon nanosheets with ammonia water modification for ethanol dehydration to ethylene, Fuel 333 (2023) 126128. Crossref
(8) M.-N.N. Shafiqah, T.J. Siang, P.S. Kumar, et al. Advanced catalysts and effect of operating parameters in ethanol dry reforming for hydrogen generation: A review, Environ. Chem. Lett. 20 (2022) 1695-1718. Crossref
(9) P. Trongjitraksa, M. Yazdanpanah, M. Fereidooni, et al. Effect of ethanol concentration on the catalytic performance of WO₃/MCF-Si and WO₃/SBA-15 catalysts toward ethanol dehydration to ethylene, S. Afr. J. Chem. Eng. 42 (2025) 180-188. Crossref
(10) H. Ma, G. Hui, J. Haichuan, et al. High-pressure catalytic dehydration of ethanol to ethylene over microwave-synthesized nanocrystalline zeolite β, Mater. Today Chem. 46 (2025) 102775. Crossref
(11) S. Swati, V. Akash, Sh. Bhawna, et al. Ni and Sr modified ZSM-5 catalyst with enhanced catalytic activity for selective dehydration of bio-derived ethanol to ethylene, Mol. Catal. 551 (2023) 113587. Crossref
(12) D. Xiuqin, L. Dong, F. Qi, et al. Mechanisms of ethanol dehydration to ethylene on γ-Al₂O₃ (100) and (110C): A combined DFT and KMC study, Comput. Mater. Sci. 219 (2023) 111979. Crossref
(13) B. Martina, A. Sara, B. Riccardo, et al. PFSA-based spray-freeze dried composite materials with SiO₂ and TiO₂ as hybrid catalysts for the gas phase dehydration of ethanol to ethylene in mild conditions, Appl. Catal. A: Gen. 654 (2023) 119065. Crossref
(14) S. Tanongsak, S. Thitipob, J. Supunnee. Performance of catalytic dehydration of ethanol to ethylene using SUZ-4 zeolite synthesized from rice husk ash in a packed-bed reactor, Micropor. Mesopor. Mat. 384 (2025) 113446. Crossref
(15) G.Y. Yergaziyeva, K. Dossumov, M.M. Mambetova, et al. Effect of Ni, La, and Ce oxides on a Cu/Al₂O₃ catalyst with low copper loading for ethanol non-oxidative dehydrogenation, Chem. Eng. Technol. 44 (2021) 1890-1899. Crossref
(16) S. Snigdha, R. Koustuv, C.P. Narayan. An energy-efficient Aspen Plus model for H₂-rich syngas production via dry reforming of ethanol: A thermodynamic analysis, Int. J. Hydrogen Energy 98 (2025) 1107-1118. Crossref
(17) Z. Alipour, V.B. Borugadda, H. Wang, et al. Syngas production through dry reforming: A review on catalysts and their materials, preparation methods and reactor type, Chem. Eng. J. 452 (2023) 139416. Crossref
(18) S. Jankhah, N. Abatzoglou, F. Gitzhofer. Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nanofilaments’ production, Int. J. Hydrogen Energy 33 (2008) 4769-4779. Crossref
(19) A. Gowda, S.K. Pathak, G.A.R. Rohaley, et al. Organic chiral nano- and microfilaments: Types, formation, and template applications, Mater. Horiz. 11 (2024) 316-340. Crossref
(20) L.N. Sacco, S. Vollebregt. Overview of engineering carbon nanomaterials such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene and nanodiamonds and other carbon allotropes inside porous anodic alumina (PAA) templates, Nanomater. 13 (2023) 260. Crossref
(21) M.B. Bahari, N.-H.H. Phuc, F. Alenazey, et al. Catalytic performance of La-Ni/Al₂O₃ catalyst for CO₂ reforming of ethanol, Catal. Today 291 (2017) 67-75. Crossref
(22) J. Yu, J.A. Odriozola, T.R. Reina. Dry reforming of ethanol and glycerol: Mini-review, Catalysts 9 (2019) 1015. Crossref
(23) Y. Wei, W. Cai, S. Deng, et al. Efficient syngas production via dry reforming of renewable ethanol over Ni/KIT-6 nanocatalysts, Renew. Energy 145 (2020) 1507-1516. Crossref
(24) R.K. Singha, A. Yadav, A. Shukla, et al. Low temperature dry reforming of methane over Pd–CeO₂ nanocatalyst, Catal. Commun. 92 (2017) 19-22. Crossref
(25) M.N. Kaydouh, H. Geagea, H.E. Zein, et al. Low temperature dry reforming of methane on rhodium and cobalt based catalysts: Active phase stabilization by confinement in mesoporous SBA-15, Appl. Catal. A 520 (2016) 114-121. Crossref
(26) V.M. Gonzalez-Delacruz, R. Pereniguez, F. Ternero, et al. Modifying the size of nickel metallic particles by H₂/CO treatment in Ni/ZrO₂ methane dry reforming catalysts, ACS Catal. 1 (2011) 82-88. Crossref
(27) G. Nahar, V. Dupont. Hydrogen production from simple alkanes and oxygenated hydrocarbons over ceria-zirconia supported catalysts: Review, Renew. Sustainable Energy Rev. 32 (2014) 777-796. Crossref
(28) M. Wang, F. Li, Q. Chen, et al. Ethanol dry reforming over Mn-doped Co/CeO₂ catalysts with enhanced activity and stability, Energy Fuels 35 (2021) 13945-13954. Crossref
(29) Q. Chen, W. Cai, Y. Liu, et al. Synthesis of Cu–Ce₀.₈Zr₀.₂O₂ catalyst by ball milling for CO₂ reforming of ethanol, J. Saudi Chem. Soc. 23 (2019) 111-117. Crossref
(30) F. Qu, Y. Wei, W. Cai, et al. Syngas production from carbon dioxide reforming of ethanol over Ir/Ce₀.₇₅Zr₀.₂₅O₂ catalyst: Effect of calcination temperatures, Energy Fuels 32 (2018) 2104-2116. Crossref
(31) A.M. da Silva, K.R. de Souza, G. Jacobs, et al. Steam and CO₂ reforming of ethanol over Rh/CeO₂ catalyst, Appl. Catal. B: Environ. 102 (2011) 94-109. Crossref
(32) F. Frusteri, S. Freni, L. Spadaro, et al. H₂ production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts, Catal. Commun. 5 (2004) 611-615. Crossref
(33) M. Arapova, E. Smal, Yu. Bespalko, et al. Ethanol dry reforming over Ni supported on modified ceria-zirconia catalysts - the effect of Ti and Nb dopants, Int. J. Hydrogen Energy 46 (2021) 39236-39250. Crossref
(34) J. Mi, J. Chen, X. Chen, et al. Recent status and developments of vacancies modulation in the ABO₃ perovskites for catalytic applications, Chem. Eur. J. 29 (2023) 202202713. Crossref
(35) K.W. Siew, H.C. Lee, J. Gimbun, et al. Syngas production from glycerol-dry (CO₂) reforming over La-promoted Ni/Al₂O₃ catalyst, Renew. Energy 74 (2015) 441-447. Crossref
(36) Y. Wan, Z. Zhou, Z. Cheng. Hydrogen production from steam reforming of methanol over CuO/ZnO/Al₂O₃ catalysts: catalytic performance and kinetic modeling, Chin. J. Chem. Eng. 24 (2016) 1186-1194. Crossref
(37) Y. Fionov, K. Khlusova, S. Chuklina, et al. High-performance Ni/Al₂O₃-(Zr+Ce)O₂ catalysts for syngas production via ethanol dry reforming, Fuel 376 (2024) 132685. Crossref
(38) D. Cao, F. Zeng, Z. Zhao, et al. Cu-based catalysts for syngas production from ethanol dry reforming: effect of oxide supports, Fuel 219 (2018) 406-416. Crossref
(39) W. Cai, J. Dong, Q. Chen, et al. One-pot microwave-assisted synthesis of Cu-Ce₀.₈Zr₀.₂O₂ with flower-like morphology: enhanced stability for ethanol dry reforming, Adv. Powder Technol. 31 (2020) 3874-3881. Crossref
(40) Y. Zhu, Y. Zhu, G. Ding, et al. Highly selective synthesis of ethylene glycol and ethanol via hydrogenation of dimethyl oxalate on Cu catalysts: influence of support, Appl. Catal. A Gen. 468 (2013) 296-304. Crossref
(41) S. Tayrabekova, P. Maki-Arvela, M. Peurla, et al. Catalytic dehydrogenation of ethanol into acetaldehyde and isobutanol using mono- and multicomponent copper catalysts, C. R. Chim. 21 (2018) 194-209. Crossref
(42) B. Barnali, B. Sujoy, C.P. Narayan, et al. Production of hydrogen by dry reforming of ethanol over alumina-supported nano-NiO/SiO₂ catalyst, Catal. Today 291 (2017) 58-66. Crossref
(43) M.A.A. Aziz, H.D. Setiabudi, L.P. Teh, et al. A review of heterogeneous catalysts for syngas production via dry reforming, J. Taiwan Inst. Chem. Eng. 101 (2019) 139-158. Crossref
(44) K. Dosumov, G.E. Ergazieva, S.Zh. Tayrabekova, et al. Study of ethanol conversion into hydrocarbons on nickel-iron magnetic composites // Combustion and Plasma Chemistry. - 2015. - Vol. 13, No. 3. - P. 181-186. (In Russian)
(45) S.-L. Johnny, D.D. Stephen, H.H. Paul, et al. Microchannel reactive distillation for the conversion of aqueous ethanol to ethylene, J. Energy Chem. 98 (2024) 481-493. Crossref
(46) Z. Chen, M. Abbas, H. Liu, et al. Rationally designing interfacial Cu-ZnO/SiO₂ catalysts for mitigation of adverse effects of water in ethyl acetate hydrogenation reactions, Chem. Eng. J. 498 (2024) 155165. Crossref
(47) B. Zhang, Sh. Hui, S. Zhang, et al. Effect of copper loading on texture, structure and catalytic performance of Cu/SiO₂ catalyst for hydrogenation of dimethyl oxalate to ethylene glycol, J. Nat. Gas Chem. 21 (2012) 563-570. Crossref
(48) O. Yangxian, T. Zhang, L. Li, et al. Investigation of Cu-ZnO/SiO₂ catalysts for CO₂ hydrogenation: effect of SiO₂ support with different porous structure, Colloids Surf. A Physicochem. Eng. Asp. 676 (2023) 132167. Crossref
(49) Y. Sun, F. Meng, Q. Ge, et al. Importance of the initial oxidation state of copper for the catalytic hydrogenation of dimethyl oxalate to ethylene glycol, ChemistryOpen 7 (2018) 969-976. Crossref
(50) L.F. Chen, P.J. Guo, M.H. Qiao, et al. Cu/SiO₂ catalysts prepared by the ammonia-evaporation method: texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 257 (2008) 172-180. Crossref
(51) M. Mambetova, G. Yergaziyeva, K. Dossumov, et al. Comparative study of physicochemical characteristics and catalytic activity of copper oxide over synthetic silicon oxide and silicon oxide from rice husk in non-oxidative dehydrogenation of ethanol, Chem. Eng. 6(74) (2022) 1-16. Crossref
Загрузки
Опубликован
Выпуск
Раздел
Лицензия

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.


